首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket’s burnout energy is used to find its equivalent initial velocity for a given launcher’s altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.  相似文献   

3.
The CORONAS-PHOTON Russian satellite intended to study the Sun was successfully launched into orbit on January 30, 2009. Scientific equipment of the satellite includes the PHOKA radiometer of soft X-ray and extreme UV radiation. The PHOKA instrument is intended to measure the absolute flux of solar electromagnetic radiation in the spectral windows of 0.5–7 nm, 0.5–11 nm, 27–37 nm, and 116–125 nm. When leaving and entering the Earth’s shadow, the instrument aboard the spacecraft measures absorption of radiation by various layers of the Earth’s atmosphere. Before the launch, photodiodes of the instrument had been calibrated using a synchrotron radiation source. In-flight stability of sensitivity of main channels is controlled using calibration channels. The paper describes the PHOKA instrument and presents its capabilities and main characteristics, as well as some results of its operation in orbit.  相似文献   

4.
TAUVEX - Tel Aviv University UV Explorer is a space telescope that is currently being built in Israel, to be flown on board the Russian international sattelite SRG - Spectrum Roentgen Gamma, in late 1995 or early 1996. TAUVEX is an imager in the near UV spectral window. Its major goal is to make a survey of about 10% of the UV sky, in the range = 1350 - 3500Å. A successful operation of TAUVEX will partially fill an important gap in our recognition of the sky, namely the distribution and the nature of the celestial UV sources, which are still mostly unknown. TAUVEX will also operate as a fast multicolor photometer in its UV range of operation. TAUVEX is aligned in parallel to the common optical axix of all the other instruments on board SRG, most of which are telescopes and monitors for high energy radiation. SRG will be thus able to perform for the first time in history simultaneous astronomical observations in one and the same celestial body, that cover together 7 order of magnitude of the recorded radiation. The observations of TAUVEX can be greatly enhanced by ground base observations.  相似文献   

5.
The Solar X-ray Imager (SXI) was launched 23 July 2001 on NOAAs GOES-12 satellite and completed post-launch testing 20 December 2001. Beginning 22 January 2003 it has provided nearly uninterrupted, full-disk, soft X-ray solar images, with a continuous frame rate significantly exceeding that for previous similar instruments. The SXI provides images with a 1 min cadence and a single-image (adjustable) dynamic range near 100. A set of metallic thin-film filters provides temperature discrimination in the 0.6 – 6.0 nm bandpass. The spatial resolution of approximately 10 arcsec FWHM is sampled with 5 arcsec pixels. Three instrument degradations have occurred since launch, two affecting entrance filters and one affecting the detector high-voltage system. This work presents the SXI instrument, its operations, and its data processing, including the impacts of the instrument degradations. A companion paper (Pizzo et al., this issue) presents SXI performance prior to an instrument degradation that occurred on 5 November 2003 and thus applies to more than 420000 soft X-ray images of the Sun.  相似文献   

6.
《Experimental Astronomy》2009,23(3):849-892
The exploration of the Jovian System and its fascinating satellite Europa is one of the priorities presented in ESA’s “Cosmic Vision” strategic document. The Jovian System indeed displays many facets. It is a small planetary system in its own right, built-up out of the mixture of gas and icy material that was present in the external region of the solar nebula. Through a complex history of accretion, internal differentiation and dynamic interaction, a very unique satellite system formed, in which three of the four Galilean satellites are locked in the so-called Laplace resonance. The energy and angular momentum they exchange among themselves and with Jupiter contribute to various degrees to the internal heating sources of the satellites. Unique among these satellites, Europa is believed to shelter an ocean between its geodynamically active icy crust and its silicate mantle, one where the main conditions for habitability may be fulfilled. For this very reason, Europa is one of the best candidates for the search for life in our Solar System. So, is Europa really habitable, representing a “habitable zone” in the Jupiter system? To answer this specific question, we need a dedicated mission to Europa. But to understand in a more generic way the habitability conditions around giant planets, we need to go beyond Europa itself and address two more general questions at the scale of the Jupiter system: to what extent is its possible habitability related to the initial conditions and formation scenario of the Jovian satellites? To what extent is it due to the way the Jupiter system works? ESA’s Cosmic Vision programme offers an ideal and timely framework to address these three key questions. Building on the in-depth reconnaissance of the Jupiter System by Galileo (and the Voyager, Ulysses, Cassini and New Horizons fly-by’s) and on the anticipated accomplishments of NASA’s JUNO mission, it is now time to design and fly a new mission which will focus on these three major questions. LAPLACE, as we propose to call it, will deploy in the Jovian system a triad of orbiting platforms to perform coordinated observations of its main components: Europa, our priority target, the Jovian satellites, Jupiter’s magnetosphere and its atmosphere and interior. LAPLACE will consolidate Europe’s role and visibility in the exploration of the Solar System and will foster the development of technologies for the exploration of deep space in Europe. Its multi-platform and multi-target architecture, combined with its broadly multidisciplinary scientific dimension, will provide an outstanding opportunity to build a broad international collaboration with all interested nations and space agencies. Team members: full list available at . Full list of LAPLACE proposal members at .  相似文献   

7.
The first aim of the present work is to compute a more accurate and recent model for the Earth’s magnetic field. The second aim is to determine the effects of the Earth’s magnetic field on the motion of a charged artificial satellite to evaluate the variations of the orbital elements of the satellite due to these effects. The magnetic field and its variation with time have been studied at different heights, longitudes and latitudes. The geomagnetic field is considered as a multiple potential field and the electrical charge of the satellite is assumed to be constant. A new computer code has been constructed to follow the components of the magnetic field in spherical harmonic models. The Gauss equations are solved numerically. The results concentrate on the computation of the numerical values of orbital perturbation for the case of a low Earth satellite. RS-1 satellite and space craft gravity probe B (GPB) are chosen as cases of studies for a detailed numerical analysis.  相似文献   

8.
Saturn’s satellite Titan is a particularly interesting body in our solar system. It is the only satellite with a dense atmosphere, which is primarily made of nitrogen and methane. It harbours an intricate photochemistry, that populates the atmosphere with aerosols, but that should deplete irreversibly the methane. The observation that methane is not depleted led to the study of Titan’s methane cycle, starting with its atmospheric part. The features that inhabit Titan’s atmosphere can last for timescales varying from year to day. For instance, the reversal of the north–south asymmetry is linked to the 16-year seasonal cycle. Diurnal phenomena have also been observed, like a stratospheric haze enhancement or a possible tropospheric drizzle. Furthermore, clouds have been reported on Titan since 1993. From these first detections and up to now, with the recent inputs from the Cassini–Huygens mission, clouds have displayed a large range of shapes, altitudes, and natures, from the flocky tropospheric clouds at the south pole to the stratiform ones in the northern stratosphere. It is still difficult to compose a clear picture of the physical processes governing these phenomena, even though of lot of different means of observation (spectroscopy, imaging) are available now. We propose here an overview of the phenomena reported between 1993 and 2008 in the low atmosphere of Titan, with indications on the location, altitude, and their characteristics in order to give a perspective of our up-to-date understanding of Titan’s meteorological manifestations. We shall focus mainly on direct imaging observations, from both space- and ground-based facilities. All of these observations, published in more than 30 different refereed papers to date, allow us to build a precise chronology of Titan’s atmospheric changes (including the north–south asymmetry, diurnal and seasonal effects, etc). Since the interpretation is at an early stage, we only briefly mention some of the current theories regarding the features’ nature.  相似文献   

9.
This paper introduces QSAT, the satellite for polar plasma observation. The QSAT project began in 2006 as an initiative by graduate students of Kyushu University, and has the potential to contribute greatly to IHY (International Heliophysical Year) by showing to the world the beauty, importance, and relevance of space science. The primary objectives of the QSAT mission are (1) to investigate plasma physics in the Earth’s aurora zone in order to better understand spacecraft charging, and (2) to conduct a comparison of the field-aligned current observed in orbit with ground-based observations. The QSAT project can provide education and research opportunities for students in an activity combining space sciences and satellite engineering. The QSAT satellite is designed to be launched in a piggyback fashion with the Japanese launch vehicle H-IIA. The spacecraft bus is being developed at the Department of Aeronautics and Astronautics of Kyushu University with collaboration of Fukuoka Institute of Technology. Regarding the payload instruments, the Space Environment Research Center of Kyushu University is developing the magnetometers, whereas the Laboratory of Spacecraft Environment Interaction Engineering of Kyushu Institute of Technology is developing the plasma probes. We aim to be ready for launch in 2009 or later.  相似文献   

10.
The NASA Earth Observing System (EOS) is an advanced study of Earth's long-term global changes of solid Earth, its atmosphere, and oceans and includes a coordinated collection of satellites, data systems, and modeling. The EOS program was conceived in the 1980s as part of NASA's Earth System Enterprise (ESE). The Solar Radiation and Climate Experiment (SORCE) is one of about 20 missions planned for the EOS program, and the SORCE measurement objectives include the total solar irradiance (TSI) and solar spectral irradiance (SSI) that are two of the 24 key measurement parameters defined for the EOS program. The SORCE satellite was launched in January 2003, and its observations are improving the understanding and generating new inquiry regarding how and why solar variability occurs and how it affects Earth's energy balance, atmosphere, and long-term climate changes.  相似文献   

11.
The SOLAR-A spacecraft is to be launched by the Institute of Space and Astronautical Science, Japan (ISAS) in August, 1991. As a successor of HINOTORI, this mission is dedicated principally to the study of solar flares, especially of high-energy phenomena observed in the X- and gamma-ray ranges. The SOLAR-A will be the unique space solar observatory during the current activity maximum period (1989–1992). With a coordinated set of instruments including hard X-ray and soft X-ray imaging telescopes as well as spectrometers with advanced capabilities, it will reveal many new aspects of flares and help better understand their physics, supporting international collaborations with ground-based observatories as well as theoretical investigations. An overview of this mission, including the satellite, its scientific instruments, and its operation, is given in this paper. Also the scientific objectives are briefly discussed.After the launch the name of SOLAR-A has been changed to YOHKOH.  相似文献   

12.
2013 marks the 30th anniversary since the launch of Soviet Spacecraft Astron that had been operated for 6 years as the largest ultraviolet telescope during its lifetime. The Astron orbital station was designed for the astrophysical observations. It was launched into orbit by Proton launch system on March 23, 1983. Astron had a 80 cm ultraviolet telescope with mass of 400 kg and a complex of X-ray spectrographs with mass of 300 kg on board as a payload. It’s high apogee orbit (with apogee 200000 km and perigee 2000 km) permitted the influences of the Earth’s umbra and radiation belts to be excluded from the measurements. The main astrophysical results are summarized in this paper.  相似文献   

13.
The Solar X-ray Spectrometer (SOXS) mission onboard GSAT-2 Indian Spacecraft was launched on 08 May 2003 using GSLV-D2 rocket by Indian Space Research Organization (ISRO). SOXS aims to study solar flares, which are the most violent and energetic phenomena in the solar system, in the energy range of 4–56 keV with high spectral and temporal resolution. SOXS employs state-of-the-art semiconductor devices, viz., Si-Pin and CZT detectors to achieve sub-keV energy resolution requirements. In this paper, we present an overview of data acquisition, control, communication and computation of low energy payload of the SOXS mission.  相似文献   

14.
The relation between the planetary distance law and the resonant structures in the solar system and in the satellite systems is shown, in that, the resonance relation has been expressed in terms of Roche’s (Bode’s) constant defined in the text. This brings forth a coherent, elegant and unified picture of the formation and structure of the solar system and the satellite systems. The Roche’s (Bode’s) constant is seen to play a central role in this unified picture, in that, it also appears to govern the resonance phenomenon in the systems  相似文献   

15.
D. Passos  I. Lopes 《Solar physics》2008,250(2):403-410
We present the results of a statistical study of the solar cycle based on the analysis of the superficial toroidal magnetic field component phase space. The magnetic field component used to create the embedded phase space was constructed from monthly sunspot number observations since 1750. The phase space was split into 32 sections (or time instants) and the average values of the orbits on this phase space were calculated (giving the most probable cycle). In this phase space it is shown that the magnetic field on the Sun’s surface evolves through a set of orbits that go around a mean orbit (i.e., the most probable magnetic cycle that we interpret as the equilibrium solution). It follows that the most probable cycle is well represented by a van der Pol oscillator limit curve (equilibrium solution), as can be derived from mean-field dynamo theory. This analysis also retrieves the empirical Gnevyshev – Ohl’s rule between the first and second parts of the solar magnetic cycle. The sunspot number evolution corresponding to the most probable cycle (in phase space) is presented.  相似文献   

16.
An explicit symplectic integrator is constructed for the problem of a rotating planetary satellite on a Keplerian orbit. The spin vector is fixed perpendicularly to the orbital plane. The integrator is constructed according to the Wisdom-Holman approach: the Hamiltonian is separated in two parts so that one of them is multiplied by a small parameter. The parameter depends on the satellite’s shape or the eccentricity of its orbit. The leading part of the Hamiltonian for small eccentricity orbits is similar to the simple pendulum and hence integrable; the perturbation does not depend on angular momentum which implies a trivial ‘kick’ solution. In spite of the necessity to evaluate elliptic function at each step, the explicit symplectic integrator proves to be quite efficient. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
It was believed until very recently that a near-equatorial satellite would always keep up with the planet’s equator (with oscillations in inclination, but without a secular drift). As explained in Efroimsky and Goldreich [Astronomy & Astrophysics (2004) Vol. 415, pp. 1187–1199], this misconception originated from a wrong interpretation of a (mathematically correct) result obtained in terms of non-osculating orbital elements. A similar analysis carried out in the language of osculating elements will endow the planetary equations with some extra terms caused by the planet’s obliquity change. Some of these terms will be non-trivial, in that they will not be amendments to the disturbing function. Due to the extra terms, the variations of a planet’s obliquity may cause a secular drift of its satellite orbit inclination. In this article we set out the analytical formalism for our study of this drift. We demonstrate that, in the case of uniform precession, the drift will be extremely slow, because the first-order terms responsible for the drift will be short-period and, thus, will have vanishing orbital averages (as anticipated 40 years ago by Peter Goldreich), while the secular terms will be of the second order only. However, it turns out that variations of the planetary precession make the first-order terms secular. For example, the planetary nutations will resonate with the satellite’s orbital frequency and, thereby, may instigate a secular drift. A detailed study of this process will be offered in a subsequent publication, while here we work out the required mathematical formalism and point out the key aspects of the dynamics. In this article, as well as in (Efroimsky 2004), we use the word ‘‘precession’’ in its most general sense which embraces the entire spectrum of changes of the spin-axis orientation -- from the long-term variations down to the Chandler Wobble down to nutations and to the polar wonder.  相似文献   

18.
The invention of gravity-propelled interplanetary space travel (also known as “gravity-assist trajectories”) in the early 1960s broke the high-energy barrier of classical space travel based on reaction propulsion, and made possible the exploration of the entire solar system with instrumented spacecraft. In this concept, a free-fall spacecraft is launched from a launch planet P1 to a nearby planet P2 such that its gravitational field (superimposed on the gravitational field of the Sun) catapults the vehicle to another planet P3, which in turn is used to repeat the process. Thus, through a series of planetary encounters, a gravity-propelled trajectory P1-P2-P3-P4-…-PN is generated. This paper describes how the invention was conceived and how the difficult mathematical problem of computing the trajectories was solved in order to numerically investigate and use the invention in actual missions. The crucial roles played by the UCLA Computing Facility and the Departments of Mathematics and Physics are also described.  相似文献   

19.
We present the first results from the ‘Low Energy Detector’ pay-load of ‘Solar X-ray Spectrometer (SOXS)’ mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of the Indian Space Research Organization (ISRO). The SLD payload employs the state-of-the-art solid state detectors viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (-20°C). The dynamic energy range of Si PIN and CZT detectors are 4–25 keV and 4–56 keV respectively. The Si PIN provides sub-keV energy resolution while CZT reveals ∼1.7keV energy resolution throughout the dynamic range. The high sensitivity and sub-keV energy resolution of Si PIN detector allows the measuring of the intensity, peak energy and equivalent width of the Fe-line complex at approximately 6.7 keV as a function of time in all 8 M-class flares studied in this investigation. The peak energy (E p) of Fe-line feature varies between 6.4 and 6.8 keV with increase in temperature from 9 to 34 MK. We found that the equivalent width (ω) of Fe-line feature increases exponentially with temperature up to 20 MK but later it increases very slowly up to 28 MK and then it remains uniform around 1.55 keV up to 34 MK. We compare our measurements ofw with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both Epand ω with temperature as the changes in the ionization and recombination conditions in the plasma during the flare interval and as a consequence the contribution from different ionic emission lines also varies.  相似文献   

20.
The Hinode satellite (formerly Solar-B) of the Japan Aerospace Exploration Agency’s Institute of Space and Astronautical Science (ISAS/JAXA) was successfully launched in September 2006. As the successor to the Yohkoh mission, it aims to understand how magnetic energy gets transferred from the photosphere to the upper atmosphere and results in explosive energy releases. Hinode is an observatory style mission, with all the instruments being designed and built to work together to address the science aims. There are three instruments onboard: the Solar Optical Telescope (SOT), the EUV Imaging Spectrometer (EIS), and the X-Ray Telescope (XRT). This paper provides an overview of the mission, detailing the satellite, the scientific payload, and operations. It will conclude with discussions on how the international science community can participate in the analysis of the mission data. T. Kosugi deceased 26 November 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号