首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
I discuss recent observational results on the X-ray properties of young stellar objects, based mostly on Chandra and XMM-Newton observations. The sensitive X-ray data on large, well characterized samples of T Tauri stars (and a number of protostars) allow to study in detail the dependence of magnetic activity on the bulk properties of the young objects and to draw important clues towards the origin of the X-ray emission. The absence of a relation between X-ray activity and rotation for T Tauri stars clearly suggests that their magnetic activity cannot be simply explained by the action of a scaled-up solar-like dynamo. I discuss alternative models for the generation of magnetic fields and also consider the long standing question whether the X-ray properties of the T Tauri stars are related to the presence/absence of circumstellar disks or active accretion.  相似文献   

2.
I argue that temperatures of spots, responsible for observed periodical light variations of T Tauri stars (TTS), are not known with reliable accuracy to discriminate between chromospheric and accretion theories of TTS 's phenomenon. The hypothesis is set up that spots on classical TTS (CTTS) are due to heating of stellar surface by radiation from a collisional accretion shock, whereas spots on weak line TTS (WTTS), at least in some cases, are connected with a collisionless accretion shock rather than chromospheric activity. Possible scenarios of WTTS interaction with circumstellar matter are discussed.  相似文献   

3.
We present measurements of magnetic field strength and geometry on the surfaces of T Tauri stars (TTS) with and without circumstellar disks. We use these measurements to argue that magnetospheric accretion models should not assume that a fixed fraction of the stellar surface contains magnetic field lines that couple with the disk. We predict the fractional area of accretion footpoints, using magnetospheric accretion models and assuming field strength is roughly constant for all TTS. Analysis of Zeeman broadened infrared line profiles shows that individual TTS each have a distribution of surface magnetic field strengths extending up to 6 kG. Averaging over this distribution yields mean magnetic field strengths of 1-3 kG for all TTS, regardless of whether the star is surrounded by a disk. These strong magnetic fields suggest that magnetic pressure dominates gas pressure in TTS photospheres, indicating the need for new model atmospheres. The He I 5876 Å emission line in TTS can be strongly polarized, so that magnetic field lines at the footpoints of accretion have uniform polarity. The circular polarization signal appears to be rotationally modulated, implying that accretion and perhaps the magnetosphere are not axisymmetric. Time series spectropolarimetry is fitted reasonably well by a simple model with one magnetic spot on the surface of a rotating star. On the other hand, spectropolarimetry of photospheric absorption lines rules out a global dipolar field at the stellar surface for at least some TTS.  相似文献   

4.
We consider the problem of the distortion of the photospheric spectrum for a young star as its light is scattered in the inner accretion disk in the dust grain evaporation region. In T Tauri stars, this region is at a distance of the order of several stellar radii and is involved in the large-scale motions of matter with velocities of ~100 km s?1 or higher. The light scattering in such a medium causes the frequency of the scattered radiation to be shifted due to the Doppler effect. We analyze the influence of this effect on the absorption line profiles in the spectra of T Tauri stars using classical results of the theory of radiative transfer. We consider two models of a scattering medium: (i) a homogeneous cylindrical surface and (ii) a cylindrical surface with an azimuth-dependent height (such conditions take place during the accretion of matter onto a star with an oblique magnetic dipole). We show that in the first case, the scattering of the photospheric radiation causes the absorption lines to broaden. If the motion of the circumstellar matter in the dust evaporation region is characterized by two velocity components, then the line profile of the scattered radiation is asymmetric, with the pattern of the asymmetry depending on the direction of the radial velocity. In the second case, the scattered radiation can cause periodic shifts of the absorption line centroid, which can be perceived by an observer as periodic radial-velocity variations in the star. We suggest that precisely this effect is responsible for the low-amplitude radial-velocity variations with periods close to the stellar rotation periods that have recently been found in some of the T Tauri stars.  相似文献   

5.
Stellar magnetic fields govern key aspects of the evolution of a young star, from controlling accretion to regulating the angular momentum evolution of the system. Spectro‐polarimetric studies of T Tauri stars have revealed a surprising range of magnetic field topologies. Meanwhile multi‐wavelength campaigns have probed T Tauri star systems from stellar photosphere to inner disk, allowing us to study magnetospheric accretion in unprecedented detail. We review recent results and discuss their implications for understanding the evolution of young stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This article summarizes the processes of high‐energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high‐resolution X‐ray and UV spectroscopy and modeling. Three mechanisms contribute to the highenergy emission from CTTS: 1) CTTS have active coronae similar to main‐sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X‐ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X‐ray observations of accreting CTTS. Specifically, the model explains the peculiar line‐ratios in the He‐like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X‐ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV‐field is present in the region of the X‐ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s–1 are required to explain the observed spectrum (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

8.
The structure of accretion discs around magnetic T Tauri stars is calculated numerically using a particle hydrodynamical code, in which magnetic interaction is included in the framework of King's diamagnetic blob accretion model. Setting up the calculation so as to simulate the density structure of a quasi-steady disc in the equatorial plane of a T Tauri star, we find that the central star's magnetic field typically produces a central hole in the disc and spreads out the surface density distribution. We argue that this result suggets a promising mechanism for explaining the unusual flatness (IR excess) of T Tauri accretion disc spectra.  相似文献   

9.
We study the steady-state structure of an accretion disc with a corona surrounding a central, rotating, magnetized star. We assume that the magneto-rotational instability is the dominant mechanism of angular momentum transport inside the disc and is responsible for producing magnetic tubes above the disc. In our model, a fraction of the dissipated energy inside the disc is transported to the corona via these magnetic tubes. This energy exchange from the disc to the corona which depends on the disc physical properties is modified because of the magnetic interaction between the stellar magnetic field and the accretion disc. According to our fully analytical solutions for such a system, the existence of a corona not only increases the surface density but reduces the temperature of the accretion disc. Also, the presence of a corona enhances the ratio of gas pressure to the total pressure. Our solutions show that when the strength of the magnetic field of the central neutron star is large or the star is rotating fast enough, profiles of the physical variables of the disc significantly modify due to the existence of a corona.  相似文献   

10.
We present Hα spectropolarimetry observations of a sample of 10 bright T Tauri stars, supplemented with new Herbig Ae/Be star data. A change in the linear polarization across Hα is detected in most of the T Tauri (9/10) and Herbig Ae (9/11) objects, which we interpret in terms of a compact source of line photons that is scattered off a rotating accretion disc. We find consistency between the position angle (PA) of the polarization and those of imaged disc PAs from infrared and millimetre imaging and interferometry studies, probing much larger scales. For the Herbig Ae stars AB Aur, MWC 480 and CQ Tau, we find the polarization PA to be perpendicular to the imaged disc, which is expected for single scattering. On the other hand, the polarization PA aligns with the outer disc PA for the T Tauri stars DR Tau and SU Aur and FU Ori, conforming to the case of multiple scattering. This difference can be explained if the inner discs of Herbig Ae stars are optically thin, whilst those around our T Tauri stars and FU Ori are optically thick. Furthermore, we develop a novel technique that combines known inclination angles and our recent Monte Carlo models to constrain the inner rim sizes of SU Aur, GW Ori, AB Aur and CQ Tau. Finally, we consider the connection of the inner disc structure with the orientation of the magnetic field in the foreground interstellar medium: for FU Ori and DR Tau, we infer an alignment of the stellar axis and the larger magnetic field direction.  相似文献   

11.
Recent observations of nearby star forming regions have offered evidence that young brown dwarfs undergo a period of mass accretion analogous to the T Tauri phase observed in young stars. Brown dwarf analogs to stellar protostars, however, have yet to be definitively observed. These young, accreting objects would shed light on the nature of the dominant brown dwarf formation process, as well as provide ideal laboratories to investigate the dependence of the accretion mechanism on protostellar mass. Recent near infrared surveys have identified candidate proto‐brown dwarfs and characterized low mass protostars in nearby star forming regions. These techniques allow near infrared spectra to diagnose the effective temperature, accretion luminosity, magnetic field strength and rotation velocity of young low mass stars across the stellar/substellar boundary. The lowest mass proto‐brown dwarfs (M < 40 MJup), however, will prove challenging to observe given current near IR observational capabilities. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We review the basic shock properties and the origin and the geometry of Herbig-Haro (H-H) shock waves. We first discuss different aspects of “normal” H-H objects which are connected with working surfaces (including internal working surfaces) of jets from young stellar objects. The emphasis is on unsolved problems of the H-H shock waves and not on the problems of the jet. We study the line flux ratios of high excitation H-H objects (high velocity shocks) and low excitation HH objects (low velocity shocks) and carry out a comparison with theoretical predictions in both cases. We emphasize an unexplained deficit of higher ions (especially OIII and SIII, but also various other ions) in high excitation objects. This lets the line flux ratios of HH objects appear as if their shock velocities are almost never above 100 km s?1, while other shock diagnostics (position-velocity diagrams, integrated line profiles, distributions of fluxes along the axis of the bow shock, etc.) definitely indicate higher shock velocities. Some aspects of the spectrum interpretation of the very low velocity shocks (like HH7) are explained quite well by the theory. A basic unsolved problem is, however, the explanation of the CI lines whose flux is up to a factor 10 times stronger than predicted for any model. Obviously we are very far from correctly predicting the ionization of C in shock models. In the last chapter we discuss, as one example of a very unusual HH-object, HH255 (Burnham's nebula). Detailed line fluxes in the immediate environment of T Tauri (the source of HH255) have shown that HH255 has a shock wave spectrum and is definitely an HH object. In the very narrow region between 3″ and 4″ S of T Tauri we find a sharp peak of the velocity dispersion, the centroid velocity, and Ne. In the same region there is an almost discontinous increase in ionization. Between 4″ and 10″ S (corresponding to 600-1600 a.u.) of T Tauri (the source of HH255) the ionization remains high but the centroid velocity is zero (with respect to T Tauri) and the velocity dispersion is very small. This result is completely surprising for a shock wave which according to the flux ratios must have ~90 km s?1-1 shock velocity. Why should a cooling region of a shock have a centroid velocity of ~0 km s?1 over a large range of distance from the stellar source? At present the geometry of the HH255 is enigmatic.  相似文献   

13.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

14.
Recent ultraviolet observations point out that there is hot, dense plasma associated with the optical jet in some T Tauri stars. In this contribution, cool MHD disk wind physics is reviewed by means of a self-similar analytical model to analyze whether hot (Te ? 80,000 K) and dense (ne ? 109 cm-3) plasma can be produced in disk winds. It is shown that these high densities can only be achieved at the base of the wind where the stellar X-rays radiation field is strong. The propagation of the X-rays radiation through the disk wind is analyzed: a cocoon of photoionized gas is generated around the star. However, it is difficult to foresee how temperatures as high as ~ 5 × 104 can be reached unless a significant fraction of the X-rays radiation is produced by magnetic reconnection at the boundary between the stellar magnetosphere and the accretion disk.  相似文献   

15.
Star-forming regions have been observed in X-rays since the first generation of satellites in the late 70s. They are very rich in magnetically-controlled X-ray phenomena: stellar flares and star-disk interactions in hundreds of T Tauri stars, confined winds in massive stars, etc. More recently, in a few low-mass stars, X-ray evidence has been found for accretion shocks. Even if it is not dominant, when it is found the influence of the circumstellar environment on X-ray emission gives precious clues on the magnetic structure in the vicinity of young stars. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present 3D simulations of rotationally induced line variability arising from complex circumstellar environment of classical T Tauri stars (CTTS) using the results of the 3D magnetohydrodynamics (MHD) simulations of Romanova et al., who considered accretion on to a CTTS with a misaligned dipole magnetic axis with respect to the rotational axis. The density, velocity and temperature structures of the MHD simulations are mapped on to the radiative transfer grid, and corresponding line source function and the observed profiles of neutral hydrogen lines (Hβ, Paβ and Brγ) are computed using the Sobolev escape probability method. We study the dependency of line variability on inclination angles ( i ) and magnetic axis misalignment angles (Θ). We find the line profiles are relatively insensitive to the details of the temperature structure of accretion funnels, but are influenced more by the mean temperature of the flow and its geometry. By comparing our models with the Paβ profiles of 42 CTTS observed by Folha & Emerson, we find that models with a smaller misaligngment angle  (Θ < ∼15°)  are more consistent with the observations which show that majority of Paβ are rather symmetric around the line centre. For a high inclination system with a small dipole misalignment angle  (Θ≈ 15°)  , only one accretion funnel (on the upper hemisphere) is visible to an observer at any given rotational phase. This can cause an anticorrelation of the line equivalent to the width in the blue wing  ( v < 0)  and that in the red wing  ( v > 0)  over half of a rotational period, and a positive correlation over the other half. We find a good overall agreement of the line variability behaviour predicted by our model and those from observations.  相似文献   

17.
We simulate the impact of a dipolar stellar magnetic field rooted in a classical T Tauri star on the accretion disk and the halo above using a 2.5D finite difference code. The gas is assumed resistive, and inside the disk accretion is driven by a Shakura-Sunyaev-type eddy viscosity. The rotational shear between the star and the Keplerian disk causes the magnetic field to be wound up and stretched outwards, away from the star. Part of the field lines open and an outflow is launched. Direct disk disruption by the Lorentz force only occurs for sufficient field strength. For our model system with a solar-mass central star, an accretion rate of 10-7M⊙/a, and a viscosity parameter αSS=0.01, a field strength of 1 kG, measured at the poles on the surface of the star, was found insufficient for disk disruption.  相似文献   

18.
Most astrophysical sources powered by accretion on to a black hole, either of stellar mass or supermassive, when observed with hard X-rays show signs of a hot Comptonizing component in the flow, the so-called corona , with observed temperatures and optical depths lying in a narrow range (0.1≲ τ ≲1 and 1×109 K≲ T ≲3×109 K). Here we argue that these facts constitute strong supporting evidence for a magnetically dominated corona. We show that the inferred thermal energy content of the corona, in all black hole systems, is far too low to explain their observed hard X-ray luminosities, unless either the size of the corona is at least of the order of 103 Schwarzschild radii, or the corona itself is in fact a reservoir , where the energy is mainly stored in the form of a magnetic field generated by a sheared rotator (probably the accretion disc). We briefly outline the main reasons why the former possibility is to be discarded, and the latter preferred.  相似文献   

19.
We calculate the structure of a force-free magnetosphere which is assumed to corotate with a central star and which interacts with an embedded differentially rotating accretion disc. The magnetic and rotation axes are aligned, and the stellar field is assumed to be a dipole. We concentrate on the case when the amount of field line twisting through the disc–magnetosphere interaction is large , and consider different outer boundary conditions. In general the field line twisting produces field line inflation (e.g. Bardou & Heyvaerts), and in some cases with large twisting many field lines can become open. We calculate the spin-down torque acting between the star and the disc, and we find that it decreases significantly for cases with large field line twisting. This suggests that the oscillating torques observed for some accreting neutron stars could be caused by the magnetosphere varying between states with low and high field line inflation. Calculations of the spin evolution of T Tauri stars may also have to be revised in the light of the significant effect that field line twisting has on the magnetic torque resulting from star–disc interactions.  相似文献   

20.
An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and, therefore, predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号