首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using Unruh-Verlinde temperature obtained by entropic force, we directly calculate partition functions of quantum field in Schwarzschild spacetime via quantum statistical method and derive the expression of the black hole statistical entropy. In our calculation the lower limit of integral is the location of isolated horizon introduced in loop quantum gravity and the upper limit of integral is infinity. So the obtained entropy is the statistical entropy from isolated horizon to the infinite. In our calculation there are not the cutoff and approximation. The results showed that, as long as proper Immirzi parameters are selected, the entropy obtained by loop quantum gravity is consistent with the quantum statistical entropy outside the black hole horizon. Therefore the black hole entropy is a quantum entanglement entropy outside the isolated horizon.  相似文献   

2.
We suggest that elliptical galaxies, as stellar systems in a stage of quasi-equilibrium, may have a specific entropy. We use the Sérsic law to describe the light profile. The specific entropy (the Boltzmann–Gibbs definition) is then calculated assuming that the galaxy behaves as a spherical, isotropic, one-component system. We predict a relation between the three parameters of the Sérsic law linked to the specific entropy, defining a surface in the parameter space, an ‘entropic plane’. We have analysed a sample of simulated merging elliptical galaxies (virtual) and a sample of galaxies belonging to the Coma Cluster (real). Both virtual and realgalaxies are: 1) located in their own ‘entropic plane‘ and 2) in this plane, they are located on a straight line, indicating constant entropy: another physical property A careful examination of the value of the specific entropy indicates a very small increase in the specific entropy with the generation after merging (virtual sample). Although one cannot distinguish between various generations for real galaxies, the distribution of specific entropy in this sample is very similar to that in the virtual sample. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.  相似文献   

4.
The entropic prior for distributions with positive and negative values   总被引:1,自引:0,他引:1  
The maximum entropy method has been used to reconstruct images in a wide range of astronomical fields, but in its traditional form it is restricted to the reconstruction of strictly positive distributions. We present an extension of the standard method to include distributions that can take both positive and negative values. The method may therefore be applied to a much wider range of astronomical reconstruction problems. In particular, we derive the form of the entropy for positive/negative distributions and use direct counting arguments to find the form of the entropic prior. We also derive the measure on the space of positive/negative distributions, which allows the definition of probability integrals and hence the proper quantification of errors.  相似文献   

5.
There has been a renewed interest in the recent years in the possibility of deviations from the predictions of Newton’s “inverse-square law” of universal gravitation. One of the reasons for renewing this interest lies in various theoretical attempts to construct a unified elementary particle theory, in which there is a natural prediction of new forces over macroscopic distances. In this paper we study the entropic gravity correction to the gravitational force on the horizon of a black hole whose metric has been modified by a Yukawa term. We find that the gravitational radius of such a black hole is given in-terms of the Lambert function, and the entropic force introduces a extra term that depends on the square of the coupling constant α of the Yukawa potential. In the case alpha equals zero we recover the Newtonian gravitational force on the horizon. In a first effort to obtain a relation between geometry and information, we calculate the Ricci scalar and through entropy we establish a relation to the number of information N where this is given in nats. Finally, we calculate a critical entropy value as well as a critical information number N c for which the curvature becomes identically zero which implies that the space becomes flat.  相似文献   

6.
The Fourier transform of cosmological density perturbations can be represented in terms of amplitudes and phases for each Fourier mode. We investigate the phase evolution of these modes using a mixture of analytical and numerical techniques. Using a toy model of one-dimensional perturbations evolving under the Zel'dovich approximation as an initial motivation, we develop a statistic that quantifies the information content of the distribution of phases. Using numerical simulations beginning with more realistic Gaussian random-phase initial conditions, we show that the information content of the phases grows from zero in the initial conditions, first slowly and then rapidly when structures become non-linear. This growth of phase information can be expressed in terms of an effective entropy. Gaussian initial conditions are a maximum entropy realization of the initial power spectrum; gravitational evolution decreases the phase entropy. We show that our definition of phase entropy results in a statistic that explicitly quantifies the information stored in the phases of density perturbations (rather than their amplitudes), and that this statistic displays interesting scaling behaviour for self-similar initial conditions.  相似文献   

7.
In the light of the problem of amalgamation and processing of multisource observational data in the combined orbit determination of near-earth satellites of the bi-satellite positioning system, the optimal weighting method of the improved variance component estimation of the two-step systematic error correction of homogeneous observational data is proposed. Analyses show that the multi-source amalgamation measurement model of the heterogeneous observational data essentially is a multi-structure, multi-parameter non-linear regression model, and the optimal weighting method of the combination of model structure characteristic analysis and variance component estimation of the heterogeneous observational data is established. The realization algorithms of the optimal weighting and the combined orbit determination parameter estimation of the two sorts of observational data are designed, and the simulation experiments of the combined orbit determination are carried out by taking the distances among the two satellites and the backup satellite and the homogeneous observational data and the distance between the two satellites and the heterogeneous observational data of satellite sensor angle measurements as the examples. The results of theoretical analysis and simulation calculation show that for the combined orbit determination of homogeneous observational data, the accuracy of orbit determination obtained by adopting the variance component estimation method of the two-step systematic error correction can be more superior than that obtained by means of the traditional empirical weighting method. For the combined orbit determination of heterogeneous observational data, through the introduction of the weighting factor by which the model structure is characterized the accuracies of the combined orbit determination of the near-earth satellite and geostationary satellite are both improved to a certain extent in comparison with the mean weighting mode.  相似文献   

8.
G. Kovács 《Solar physics》1983,82(1-2):123-128
The accuracy of frequency determination by a least squares technique for an autoregressive spectral estimator is studied and compared with the Fourier method. Using numerical tests the probability distribution function of the peak location is calculated. The autoregressive filter order is optimized in the sense of minimum variance of the peak location. Simple sinusoidal signals with additive Gaussian noise are considered and the effect of other components is only indicated. Generally, a filter order between 1/3 and 1/2 of the total data number and a not very dense data sampling, gives the most stable spectrum. The results are numerical.  相似文献   

9.
We describe a novel technique for probing the statistical properties of cosmic magnetic fields based on radio polarimetry data. Second-order magnetic field statistics like the power spectrum cannot always distinguish between magnetic fields with essentially different spatial structure. Synchrotron polarimetry naturally allows certain fourth-order magnetic field statistics to be inferred from observational data, which lifts this degeneracy and can thereby help us gain a better picture of the structure of the cosmic fields and test theoretical scenarios describing magnetic turbulence. In this work we show that a fourth-order correlator of specific physical interest, the tension force spectrum, can be recovered from the polarized synchrotron emission data. We develop an estimator for this quantity based on polarized emission observations in the Faraday rotation free frequency regime. We consider two cases: a statistically isotropic field distribution, and a statistically isotropic field superimposed on a weak mean field. In both cases the tension force power spectrum is measurable; in the latter case, the magnetic power spectrum may also be obtainable. The method is exact in the idealized case of a homogeneous relativistic electron distribution that has a power-law energy spectrum with a spectral index of   p = 3  , and assumes statistical isotropy of the turbulent field. We carry out numerical tests of our method using synthetic polarized emission data generated from numerically simulated magnetic fields. We show that the method is valid, that it is not prohibitively sensitive to the value of the electron spectral index p , and that the observed tension force spectrum allows one to distinguish between e.g. a randomly tangled magnetic field (a default assumption in many studies) and a field organized in folded flux sheets or filaments.  相似文献   

10.
探索Blazar光变资料中的周期或准周期变化是1个有待深入研究的领域.由于光变资料的复杂性,目前寻找周期的算法还不够完善.文中以现代谱估计为基础,详细论述了自回归(Auto-regressive,AR)模型谱估计方法和最大熵谱估计的基本原理,分析了阶数选择对模型的重要影响,并把这些方法应用到类星体3C 279和BL Lac天体OJ287的光变周期分析中,得到它们的光变周期分别为7.14和11.76yr.通过验证,自回归 模型谱估计方法由于其分辨率高,可以作为1种较好的分析周期的方法.最后指出在应用谱估计分析Blazar天体的光变周期注意事项.  相似文献   

11.
本文利用共动度规讨论了非理想流体开放体系在自引力作用下的坍缩过程之熵变,结果表明,形成视界之前,体系的总熵不增,这说明黑洞的高熵产生于突变之中。  相似文献   

12.
Using the analytic extension method, we study Hawking radiation of an (n+4)-dimensional Schwarzschild-de Sitter black hole. Under the condition that the total energy is conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the relation between the black hole event horizon and cosmological horizon, we obtain the radiation spectrum of de Sitter spacetime. This radiation spectrum is no longer a strictly pure thermal spectrum. It is related to the change of the Bekenstein-Hawking (B-H) entropy corresponding the black hole event horizon and cosmological horizon. The result satisfies the unitary principle. At the same time, we also testify that the entropy of de Sitter spacetime is the sum of the entropy of black hole event horizon and the one of cosmological horizon.  相似文献   

13.
The effects of non-uniform plasma target ionisation on the spectrum of thick-target HXR bremsstrahlung from a non-thermal electron beam are analysed. In particular the effect of the target ionisation structure on beam collisional energy losses, and hence on inversion of an observed photon spectrum to yield the electron injection spectrum, is considered and results compared with those obtained under the usual assumption of a fully ionised target.The problem is formulated and solved in principle for a general target ionisation structure, then discussed in detail for the case of a step function distribution of ionisation with column depth as an approximation to the sharp coronal–chromospheric step structure in solar flare plasmas. It is found that such ionisation structure has very dramatic effects on derivation of the thick-target electron injection spectrum F0(E0) as compared with the result F*0(E 0) obtained under the usual assumption of a fully ionised target: (a) Inferred F*0 contain more electrons than F 0 and in some cases include electrons at energies where none are actually present. Although the total (energy-integrated) beam fluxes in the two cases do not differ by a factor of more than Aee/AeH, the spectral shapes can differ greatly over finite energy intervals resulting in the danger of misleading results for total fluxes obtained by extrapolation. (b) The unconstrained mathematical solution for F0 for any photon spectrum is never unique, while that for F*0 is unique. When the physical constraint F0 0 is added, for some photon spectra solutions for F0 may not exist or may not be unique. (This is not an effect of noise but of real analytic ambiguity.) (c) For data corresponding to F*0 with a low-energy cut-off, or a cut-off or rapid enough exponential decline at high energies, a unique solution F0 does exist and we obtain a recursive summation for its evaluation.Consequently, in future work on the inversion of HXR bremsstrahlung spectra it will be vital for algorithms to include the effects of target ionisation if spurious results on thick-target electron spectra are not to be inferred. Finally it is pointed out that the depth of the transition zone, and its evaporative evolution during flares may be derivable from its effect on the HXR spectrum.  相似文献   

14.
Studies of the X-ray surface brightness profiles of clusters, coupled with theoretical considerations, suggest that the breaking of self-similarity in the hot gas results from an 'entropy floor', established by some heating process, which affects the structure of the intracluster gas strongly in lower-mass systems. By fitting analytical models for the radial variation in gas density and temperature to X-ray spectral images from the ROSAT PSPC and ASCA GIS, we have derived gas entropy profiles for 20 galaxy clusters and groups. We show that, when these profiles are scaled such that they should lie on top of one another in the case of self-similarity, the lowest-mass systems have higher-scaled entropy profiles than more massive systems. This appears to be due to a baseline entropy of depending on the extent to which shocks have been suppressed in low-mass systems. The extra entropy may be present in all systems, but is detectable only in poor clusters, where it is significant compared with the entropy generated by gravitational collapse. This excess entropy appears to be distributed uniformly with radius outside the central cooling regions.
We determine the energy associated with this entropy floor, by studying the net reduction in binding energy of the gas in low-mass systems, and find that it corresponds to a pre-heating temperature of 0.3 keV. Since the relationship between entropy and energy injection depends upon gas density, we are able to combine the excesses of 70140 keV cm2 and 0.3 keV to derive the typical electron density of the gas into which the energy was injected. The resulting value of implies that the heating must have happened prior to cluster collapse but after a redshift z 710. The energy requirement is well matched to the energy from supernova explosions responsible for the metals which now pollute the intracluster gas.  相似文献   

15.
We examine the use of the TE cross-correlation power spectrum of the cosmic microwave background (CMB) as a complementary test to detect primordial gravitational waves (PGWs). The first method used is based on the determination of the lowest multipole, ℓ0, where the TE power spectrum,   C TE  , first changes sign. The second method uses Wiener filtering on the CMB TE data to remove the density perturbations contribution to the TE power spectrum. In principle this leaves only the contribution of PGWs. We examine two toy experiments (one ideal and another more realistic) to see their ability to constrain PGWs using the TE power spectrum alone. We found that an ideal experiment, one limited only by cosmic variance, can detect PGWs with a ratio of tensor to scalar metric perturbation power spectra   r = 0.3  at 99.9 per cent confidence level using only the TE correlation. This value is comparable with current constraints obtained by the Wilkinson Microwave Anisotropy Probe based on the 2σ upper limits to the B-mode amplitude. We demonstrate that to measure PGWs by their contribution to the TE cross-correlation power spectrum in a realistic ground-based experiment when real instrumental noise is taken into account, the tensor-to-scalar ratio, r , should be approximately three times larger.  相似文献   

16.
The power spectra of Pi2 geomagnetic pulsations are obtained by applying the maximum entropy method (MEM) of spectrum analysis. The results indicate that Pi2's can be divided into 3 categories according to spectral characteristics: (i) those in which all the peaks belong to a harmonic series, (ii) those in which some peaks belong to a harmonic series while the remainder are harmonically unrelated, and (iii) those which exhibit no evidence of harmonic structure. The fundamental periods of the harmonic series lie in the range 50–150 sec and decrease with increasing Kp index. The findings on spectral structure enable us to resolve some of the existing differences of opinion on the spectral structure of Pi2's. It is suggested that the harmonically related peaks in Pi2 spectra originate as surface waves on the plasmapause.  相似文献   

17.
Spectral analysis of 18O values from V28–239 pacific ocean deep-sea core has revealed periodicities which correspond to those calculated for the eccentricity (400 and 100 Kyrs), the obliquity (41 Kyrs) and the climatic precession (23 and 19 Kyrs) as well as secondary ones spanning between 16 Kyrs to 1 million years. The methods of spectrum analysis applied were the maximum entropy, fourier and the successive approximations, where the periodicities are located and their amplitude defined.The significance and stationarity of the detected periods was examined by various tests as well as employing an evolutionary pseudosonogram.The dominant 100 Kyrs and 50 Kyrs periods are present throughout all the interval, the 30 Kyrs is at low variance during 1.2 to 2 million years interval, the precessional signal is not stationary and appears at about 600 Kyrs to 1820 Kyrs.This study shows the necessity of applying various spectral analysis techniques and several tests to extract the optimum of spectral information and also to test the stationarity of certain periodicities, especially when implied mechanisms of climatic cause and variability are involved.Deceased.  相似文献   

18.
考虑了观测到的Blazars多波段辐射的两分量特征,提出该观测特征可由频率相并的聚束效应和内禀谱一起来解释.多普勒因子与频率之间的关系由分析观测数据获得.假定内禀谱由非均匀喷流中同步-自康普顿机制产生,应用该模型解释了3C279的辐射.  相似文献   

19.
We investigate the number density of maxima in the cosmological galaxy density field smoothed with a filter as a probe of clustering. In previous work it has been shown that this statistic is closely related to the slope of the linear power spectrum, even when the directly measured power spectrum is non-linear. In the present paper we investigate the sensitivity of the peak number density to various models with differing power spectra, including rolling index models, cosmologies with massive neutrinos and different baryon densities. We find that rolling index models which have given an improved fit to CMB/LSS (cosmic microwave background/large scale structure) data yield a ∼10 per cent difference in peak density compared to the scale invariant case. Models with 0.3 eV neutrinos have effects of similar magnitude and it should be possible to constrain them with data from current galaxy redshift surveys. Baryon oscillations in the power spectrum also give rise to distinctive features in the peak density. These are preserved without modification when measured from the peak density in fully non-linear N -body simulations. Using the simulations, we also investigate how the peak density is modified in the presence of redshift distortions. Redshift distortions cause a suppression of the number of peaks, largely due to fingers of God overlapping in redshift space. We find that this effect can be modelled by using a modification of the input power spectrum. We also study the results when the simulation density field is traced by galaxies obtained by populating haloes with a halo occupation distribution consistent with observations. The peak number density is consistent with that in the dark matter for filter scales  >4  h −1 Mpc  , for which we find good agreement with the linear theory predictions. In a companion paper we analyse data from the 2dF Galaxy Redshift Survey.  相似文献   

20.
Fulchignoni  M.  Delsanti  A.  Barucci  M. A.  Birlan  M. 《Earth, Moon, and Planets》2003,92(1-4):243-250
The principal component (PC) and G-mode multivariate statisticshave been used in analysing the set of the 34 Edgeworth–Kuiper objects (EKOs) – 23 Trans NeptunianObjects (TNO) and 11 Centaurs – for which B, V, R, I, J homogeneous photometry were available.The results obtained show that V-I and V-Js are the key parameters in structuring the sample inhomogeneous groups. The PC1 axis (which contains ~93% of the sample total variance) spans fivetimes more than the PC2 (which contains ~6% of the sample total variance). The extremesof the PC1 axis contain the objects having a flat spectrum (low PC1 values) and a very red spectrumrespectively. Independently, the G-mode analysis allows us to distinguish six homogeneous groups of objectswhich confirm and extend the results obtained with the PC analysis. In addition to these groups, a few objectsremain not included in any group (i.e., does not have significant similitude with other objects) and yet givean indication of a more complex compositional structure of the sample. These preliminary results will haveto be confirmed and completed when a larger sample is available, but they provide some interesting hintsfor understanding the – mainly collisional – evolution of the EKOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号