首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The thermal regime of the baryons behind shock waves arising in the process of virialization of dark matter halos is governed at certain conditions by radiation of HD lines. A small fraction of the shocked gas can cool down to the temperature of the cosmic microwave background (CMB). We estimate an upper limit for this fraction: at z = 10 it increases sharply from about qT ∼ 10–3 for dark halos of M = 5 × 107 M to ∼ 0.1 for halos with M = 108 M. Further increase of the halo mass does not lead however to a significant growth of qT – the asymptotic value for M ≫ 108 M is 0.3. We estimate the star formation rate associated with such shock waves, and show that they can provide a small but not negligible fraction of the star formation. We argue that extremely metal‐poor low‐mass stars in the Milky Way may have been formed from primordial gas behind such shocks. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We use three indicators of massive star formation, Hα, FIR and non-thermal radio luminosities, to compare estimates of the star formation rate (SFR) for a sample of 34 spiral galaxies. To adjust the SFR values obtained from these indicators, we considered the slope, α, and/or the upper mass limit M up of the initial mass function (IMF) as free parameters. The best agreement between the indicators is found for M up≈ 60-100 M⊙ and α ≈–3.1 at the high-mass end of the IMF (M>10 M⊙.Parallelwith the SFR we also estimated the FIR excess X FIR, defined as the fraction of the observed FIR not directly related to young massive stars. X FIR is found to be well correlated with types of spiral galaxies and their colours (B-V): the redder a galaxy, the higher its FIR excess. We conclude that for any parameters of the IMF the observed FIR flux of early-type spiral galaxies needs an additional source of energy apart from massive star radiation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We discuss observations of the first galaxies, within cosmic reionization, at centimeter and millimeter wavelengths. We present a summary of current observations of the host galaxies of the most distant QSOs (z∼6). These observations reveal the gas, dust, and star formation in the host galaxies on kpc-scales. These data imply an enriched ISM in the QSO host galaxies within 1 Gyr of the big bang, and are consistent with models of coeval supermassive black hole and spheroidal galaxy formation in major mergers at high redshift. Current instruments are limited to studying truly pathologic objects at these redshifts, meaning hyper-luminous infrared galaxies (L FIR ∼1013 L ). ALMA will provide the one to two orders of magnitude improvement in millimeter astronomy required to study normal star forming galaxies (i.e. Ly-α emitters) at z∼6. ALMA will reveal, at sub-kpc spatial resolution, the thermal gas and dust—the fundamental fuel for star formation—in galaxies into cosmic reionization.  相似文献   

4.
Results from optical photometric observations of the PMS star V 1735 Cyg are reported. The star is located in the IC 5146 dark cloud complex—a region of active star formation. On the basis of observed outburst and spectral properties, V 1735 Cyg was classified as a FUor object. We present data from BVRI CCD photometric observations of the star, collected from March 2003 to January 2009. Plates from the Rozhen Schmidt telescope archive were scanned for a brightness estimation of the star. A sequence of sixteen comparison stars in the field of V 1735 Cyg was calibrated in BVRI bands. The data from photographic observations made from 1986 to 1992 show a strong light variability (ΔV=1m2). In contrast, the recent photometric data obtained from 2003 to 2009 show only small amplitude variations (ΔI=0m3). The analysis of existing photometric data shows a very slow decrease in star brightness—1m8 (R) for a 44 year period. The possibilities for future photometric investigations of V 1735 Cyg using the photographical plate archives is discussed briefly.  相似文献   

5.
The evolution of young (≲ 10 Myr) star clusters with a density exceeding about 105 star pc−3 are strongly affected by physical stellar collisions during their early lifetime. In such environments the same star may participate in several tens to hundreds of collisions ultimately leading to the collapse of the star to a black hole of intermediate mass. At later time, the black hole may acquire a companion star by tidal capture or by dynamical – three-body – capture. When the captured star evolves it starts to fill its Roche-lobe and transfers mass to its accompanying black hole. This then leads to a bright phase of X-ray emission, which lasts for the remaining main-sequence lifetime of the donor. If the star captured by the intermediate mass black hole is relatively low mass ≲ 2 M⊙) the binary will also be visible as a bright source in gravitational waves. Based on empirical models we argue that, for as long as the donor remains on the main sequence, the source will be ultraluminous Lx >rsim 1040 ergs-1 for about a week every few month. When the donor star is more massive >15 M⊙, or evolved off the main sequence the bright time is longer, but the total accretion phase lasts much shorter.  相似文献   

6.
We summarize our modelling of galaxy photometric evolution (the GRASIL code). By including the effects of dust grains and PAH molecules in a two-phase clumpy medium, where clumps are associated with star-forming regions, we reproduce the observed UV to radio SEDs of galaxies with star formation rates from zero to several hundred M yr-1.GRASIL is a powerful tool for investigating star formation, the initial mass function and the supernova rate in nearby starbursts and normal galaxies, as well as for predicting the evolution of luminosity functions of different types of galaxies at wavelengths covering six decades. It may be interfaced with any device to provide the star formation and metallicity histories of a galaxy. As an application, we have investigated the properties of early-type galaxies in the HDF, tracking the contribution of this population to the cosmic star formation history, which has a broad peak between z = 1.5 and 4.To explain the absence of objects at z ≳ 1.3, we suggest a sequence of dust-enshrouded merger-driven starbursts in the first few Gyr of galaxy lifetimes. We are at present working on a complementary sample of late-type objects selected in a similar way. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Luminous and Ultraluminous infrared galaxies (ULIRGs) contain the most intense regions of star formation in the local universe. Because molecular gas is the fuel for current and future star formation, the physical properties and distribution of the warm, dense molecular gas are key components for understanding the processes and timescales controlling star formation in these merger and merger remnant galaxies. We present new results from a legacy project on the Submillimeter Array which is producing high resolution images of a representative sample of galaxies with log L FIR >11.4 and D<200 Mpc.  相似文献   

8.
Recently, Bijalwan (Astrophys. Space Sci. doi:, 2011) discussed all important solutions of charged fluid spheres with pressure and Gupta et al. (Astrophys. Space Sci. doi:, 2010) found first closed form solutions of charged Vaidya-Tikekar (V-T) type super-dense star. We extend here the approach evolved by Bijalwan (Astrophys. Space Sci. doi:, 2011) to find all possible closed form solutions of V-T type super-dense stars. The existing solutions of Vaidya-Tikekar type charged fluid spheres considering particular form of electric field intensity are being used to model massive stars. Infact at present maximum masses of the star models are found to be 8.223931M Θ and 8.460857M Θ subject to ultra-relativistic and non-relativistic conditions respectively. But these stars with such are large masses are not well behaved due to decreasing velocity of sound in the interior of star. We present new results concerning the existence of static, electrically charged perfect fluid spheres that have a regular interior. It is observed that electric intensity used in this article can be used to model superdense stars with ultrahigh surface density of the order 2×1014 gm/cm3 which may have maximum mass 7.26368240M Θ for ultra-relativistic condition and velocity of sound found to be decreasing towards pressure free interface. We solve the Einstein-Maxwell equations considering a general barotropic equation of state with pressure. For brevity we don’t present a detailed analysis of the derived solutions in this paper.  相似文献   

9.
Current cold dark matter models of structure formation make a clear prediction for cosmic structures in the Dark Ages. We discuss the formation and nature of the first collapsed and first luminous objects in the universe arising in these theories. The first virialized objects are dark matter halos at the free streaming length which depends on the mass and nature of the assumed weakly interacting massive particle. The first objects that also contain significant fractions of gas have masses of the cosmological Jeans scale ∼ 104M at the redshifts of interest (z ∼ 30). The first pre-galactic objects that host stars have masses of 106 M . This mass scale is given by the requirement of a sufficiently high virial temperature to enable the chemical reactions necessary to form molecular hydrogen which subsequently allows the gas to dissipate its gravitational energy and to collapse to form a star. An individual massive star is formed per such object and explodes in a supernova within a few Myrs. All these stages of the formation of the first objects are illustrated by fully resolved three dimensional cosmological hydrodynamic simulations. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

11.
We present BVIc photometry of the brightest stars andcompact star clusters in NGC 2976, a dwarf galaxy in the interacting M81/M82 group. Deep CCD images of the galaxy were obtained with the 6m‐Telescope of the Special Astrophysical Observatory (Russia) at arcsec resolution. About 290 young stars and concentrated young clusters were measured. Supplementary data in the ultraviolet are taken from the literature. The extinction to the measured objects is comparatively low, E(BV) ∼ 0.15 .. 0.20 mag. We estimate the ages of youngest resolved stars and concentrated star clusters to be ∼5 · 106 years. This population is concentrated in a broad stripe facing M81. In the central disk the population is a bit older, about 8 · 106 years, this may be a hint to an outward spreading star formation process. The metallicity of the disk population is estimatedas solar (z ∼ 0.02) from a fitting to Padova theoretical stellar isochrones.  相似文献   

12.
The paper presents a class of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0.3277≤K≤0.49), for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=0.3277 with X=−0.15, the maximum mass of the star comes out to be M=0.92M Θ with radius r b ≈17.15 km and the surface red shift Z b ≈0.087187. It has been observed that under well behaved conditions this class of solutions gives us the mass of super dense object within the range of white-dwarf.  相似文献   

13.
The abundances of 22 heavy elements from Sr to Pb have been determined for the halo star HD 29907 (T eff = 5500 K, log g = 4.64) with [Fe/H] = −1.55 using high-quality VLT/UVES spectra (ESO, Chile). The star has a moderate enhancement of r-process elements (Eu-Tm) with [r/Fe] = 0.63. In the range from Ba to Yb, the derived abundance pattern agrees well with those for strongly r-process enhanced stars (r-II stars with [Eu/Fe] > 1 and [Ba/Eu] < 0), such as CS 22892-052 and CS 31082-001, as well as with the scaled solar r-process curve and the r-process model HEW. Thus, Ba-Yb in HD 29907 originate in the r-process. Just as other moderately r-process enhanced stars studied in the literature, HD 29907 exhibits higher Sr, Y, and Zr abundances than those for r-II stars. These results confirm the assumption by other authors about the existence of an additional Sr-Zr synthesis mechanism in the early Galaxy before the onset of nucleosynthesis in asymptotic giant branch (AGB) stars. The same mechanism can be responsible for the enhancement of Mo-Ag in the star being investigated compared to r-II stars. There are no grounds to suggest the presence of s-nuclei of lead in the material of the star being investigated, because its measured abundance ratio log ɛ(Pb/Eu) = 1.20 lies within the range for the comparison stars: from log ɛ(Pb/Eu) = 0.17 (CS 31082-001) to < 1.55 (HE 1219-0312). Thus, even if there was a contribution of AGB stars to the heavy-element enrichment of the interstellar medium at the epoch with [Fe/H] = −1.55, it was small, at the level of the abundance error.  相似文献   

14.
The methods of panoramic (3D) spectroscopy are used by us in a detailed study of galaxies with ongoing star formation chosen from among objects in seven selected fields of the Second Byurakan Survey (SBS). This article deals with the irregular galaxy SBS 1202 + 583, which our classification scheme identifies as being in a continuous phase of star formation. Observations were made with the panoramic spectrographs MPFS at the 6-m telescope of the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences and VAGR at the 2.6-m telescope of the Byurakan Astrophysical Observatory (BAO) in Armenia. The data are used to construct maps of the radiative fluxes in the continuum and various emission lines. Special attention is devoted to analyzing the emission in the Hα hydrogen recombination line and in the forbidden low-ionization doublets of nitrogen [NII] λλ6548, 6583 and sulfur [SII] λλ6716, 6731, and the ratios of the intensities of the forbidden lines to Hα. The observable characteristics (size, Hα fluxes, etc.) of nine HII regions are studied. The estimated current rates of star formation in the individual HII regions based on the Hα fluxes lie within the range of 0.3-1.2 M /year. The dependence of the ratio of the intensities of the emission in these above mentioned forbidden doublets on the rate of star formation in the HII regions is found.  相似文献   

15.
The connection between long Gamma Ray Bursts (GRBs) and Supernovae (SNe) have been established through the well observed cases. These events can be explained as the prompt collapse to a black hole (BH) of the core of a massive star (M≳40M ). The energies of these GRB-SNe were much larger than those of typical SNe, thus these SNe are called Hypernovae (HNe). The case of SN 2006aj/GRB060218 appears different: the GRB was weak and soft, being called an X-Ray Flash (XRF); the SN is dimmer and has very weak oxygen lines. The explosion energy of SN 2006aj was smaller, as was the ejected mass. In our model, the progenitor star had a smaller mass than other GRB-SNe (M∼20M ), suggesting that a neutron star (NS) rather than a BH was formed. If the nascent NS was strongly magnetized as a magnetar and rapidly spinning, it may launch a weak GRB or an XRF. The peculiar light curve of Type Ib SN 2005bf may also be powered by a magnetar. The blue-shifted nebular emission lines of 2005bf indicate the unipolar explosion possibly related to standing accretion shock instability (SASI) associated with a newly born NS.  相似文献   

16.
We report multi-frequency radio continuum and hydrogen radio recombination line observations of HII regions near l = 24.8°, b = 0.1° using the Giant Metrewave Radio Telescope (GMRT) at 1.28 GHz (n = 172), 0.61 GHz (n = 220) and the Very Large Array (VLA) at 1.42 GHz (n = 166). The region consists of a large number of resolved HII regions and a few compact HII regions as seen in our continuum maps, many of which have associated infrared (IR) point sources. The largest HII region at l = 24.83° and b = 0.1° is a few arcmins in size and has a shell-type morphology. It is a massive HII region enclosing ∼550 M with a linear size of 7 pc and an rms electron density of ∼110 cm−3 at a kinematic distance of 6 kpc. The required ionization can be provided by a single star of spectral type O5.5. We also report detection of hydrogen recombination lines from the HII region at l = 24.83° and b = 0.1° at all observed frequencies near V lsr = 100 km s−1. We model the observed integrated line flux density as arising in the diffuse HII region and find that the best fitting model has an electron density comparable to that derived from the continuum. We also report detection of hydrogen recombination lines from two other HII regions in the field.  相似文献   

17.
The COMBO-17 survey cite(Wolf et al., 2002) contains ≈ 40000 galaxies down to R=24 mag on an area of one square degree, obtained with the wide field imager at the 2.2 m telescope at La Silla. A multi-colour classification on the basis of 5 broadband and 12 medium band filters (=17 bands) yields accurate redshifts (σ z ≤ 0.01 at the bright end up to σ z ≈ 0.1 at the faint end) and spectral energy distribution types (SEDs) when using observed galaxy templates from (Kinney et al.,1996). However, there is an obvious weakness in this classification scheme: The relation between star formation history and SED remains unclear. It is therefore impossible to draw firm conclusions about the age of the underlying stellar population and the expected aging between z ≈ 1 and z ≈ 0 can not be quantified. We will present first results of our attempt to replace the observed templates with model spectra from the PEGASE code (Fioc and Rocca-Volmerange, 1997), in order to get a better handle on the star formation history. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Planetary systems are angular momentum reservoirs generated during star formation. Solutions to three of the most important problems in contemporary astrophysics are needed to understand the entire process of planetary system formation: The physics of the ISM. Stars form from dense molecular clouds that contain ∼ 30% of the total interstellar medium (ISM) mass. The structure, properties and lifetimes of molecular clouds are determined by the overall dynamics and evolution of a very complex system – the ISM. Understanding the physics of the ISM is of prime importance not only for Galactic but also for extragalactic and cosmological studies. Most of the ISM volume (∼ 65%) is filled with diffuse gas at temperatures between 3000 and 300 000 K, representing about 50% of the ISM mass. The physics of accretion and outflow. Powerful outflows are known to regulate angular momentum transport during star formation, the so-called accretion–outflow engine. Elementary physical considerations show that, to be efficient, the acceleration region for the outflows must be located close to the star (within 1 AU) where the gravitational field is strong. According to recent numerical simulations, this is also the region where terrestrial planets could form after 1 Myr. One should keep in mind that today the only evidence for life in the Universe comes from a planet located in this inner disk region (at 1 AU) from its parent star. The temperature of the accretion–outflow engine is between 3000 and 10 7 K. After 1 Myr, during the classical T Tauri stage, extinction is small and the engine becomes naked and can be observed at ultraviolet wavelengths. The physics of planet formation. Observations of volatiles released by dust, planetesimals and comets provide an extremely powerful tool for determining the relative abundances of the vaporizing species and for studying the photochemical and physical processes acting in the inner parts of young planetary systems. This region is illuminated by the strong UV radiation field produced by the star and the accretion–outflow engine. Absorption spectroscopy provides the most sensitive tool for determining the properties of the circumstellar gas as well as the characteristics of the atmospheres of the inner planets transiting the stellar disk. UV radiation also pumps the electronic transitions of the most abundant molecules (H 2, CO, etc.) that are observed in the UV.Here we argue that access to the UV spectral range is essential for making progress in this field, since the resonance lines of the most abundant atoms and ions at temperatures between 3000 and 300 000 K, together with the electronic transitions of the most abundant molecules (H 2, CO, OH, CS, S 2, CO 2 +, C 2, O 2, O3, etc.) are at UV wavelengths. A powerful UV-optical instrument would provide an efficient mean for measuring the abundance of ozone in the atmosphere of the thousands of transiting planets expected to be detected by the next space missions (GAIA, Corot, Kepler, etc.). Thus, a follow-up UV mission would be optimal for identifying Earth-like candidates.  相似文献   

19.
A magnetic torque associated with the magnetic field linking a giant, gaseous protoplanet to its host pre-main-sequence star can halt inward protoplanet migration. This torque results from a toroidal magnetic field generated from the star’s poloidal (dipole) field by the twisting differential motion between the star’s rotation and the protoplanet’s revolution. Outside the corotation radius, where a protoplanet orbits slower than its host star spins, this torque transfers angular momentum from the star to the protoplanet, halting inward migration. Necessary conditions for angular momentum transfer include the requirement that the Alfvén speed v A in the region magnetically linking a protoplanet to its host star exceeds the protoplanet’s orbital speed v K . In addition, the timescale for Ohmic dissipation τ D must exceed the protoplanet’s orbital period P to ensure that the protoplanet is magnetically coupled to its host star. For a Jupiter-mass protoplanet orbiting a solar-mass pre-main-sequence star, v A >v K and τ D >P only when the migrating protoplanet approaches within about 0.1 AU of its host star, primarily because of the rapid drop in the strength of the magnetic field with increasing distance from the central star. Because of this restricted reach, inwardly migrating gaseous protoplanets can be expected to “pile up” very close to their central stars, as is indeed observed for extrasolar planets. The characteristic timescale required for a magnetic torque to transfer angular momentum outward from a more rapidly spinning central star to a magnetically coupled protoplanet is found to be comparable to planet-forming disk lifetimes and protoplanet migration timescales.  相似文献   

20.
We discuss three topics related to the neutron star (NS) mass spectrum. At first we discuss the possibility to form low-mass (M≲1M ) objects. In our opinion this and suggest this is possible only due to fragmentation of rapidly rotating proto-NSs. Such low-mass NSs should have very high spatial velocities which could allow identification. A critical assessment of this scenario is given. However, the mechanism has its own problems, and so formation of such objects is not very probable. Secondly, we discuss mass growth due to accretion for NSs in close binary systems. With the help of numerical population synthesis calculations we derive the mass spectrum of massive (M>1.8M ) NSs. Finally, we discuss the role of the mass spectrum in population studies of young cooling NSs. We formulate a kind of mass constraint which can be helpful, in our opinion, in discussing different competitive models of the thermal evolution of NSs. S.B.P. wants to thank the Organizers for support and hospitality. The work of S.B.P. was supported by the RFBR grant 06-02-16025 and by the “Dynasty” Foundation (Russia). The work of M.E.P.—by the RFBR grant 04-02-16720 and that of H.G. by DFG grant 436 ARM 17/4/05.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号