首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We consider an equation of state that leads to a first-order phase transition from the nucleon state to the quark state with a transition parameter λ>3/2 (λ=ρQ/(ρN+P0/c2)) in superdense nuclear matter. Our calculations of integrated parameters for superdense stars using this equation of state show that on the stable branch of the dependence of stellar mass on central pressure dM/dPc>0) in the range of low masses, a new local maximum with Mmax=0.082 and R=1251 km appears after the formation of a toothlike kink (M=0.08M, R=205 km) attributable to quark production. For such a star, the mass and radius of the quark core are Mcore=0.005M and Rcore=1.73 km, respectively. In the model under consideration, mass accretion can result in two successive transitions to a quark-core neutron star with energy release similar to a supernova explosion: initially, a low-mass star with a quark core is formed; the subsequent accretion leads to configurations with a radius of ~1000 km; and, finally, the second catastrophic restructuring gives rise to a star with a radius of ~100 km.  相似文献   

2.
A Fabry-Perot spectrometer was used to map the H II region around the O star ξ Per in the Hβ emission line. The angular size of the region is \(9_.^ \circ 1 \times 6_.^ \circ 0\). The region-boundary contour drawn at the double background level is centered on the star. The accuracy of our emission intensity measurements is 0.2 rayleigh. The proximity of the nebula NGC 1499 has virtually no effect on the measured emission measure toward the star. The star excitation parameter derived from observations corresponds to the spectral type O7.5 III and is U(Sp)=56.0±8.4 pc cm?2; the mean electron density in the region is ne=3.1±0.4 cm?3.  相似文献   

3.
Speckle-interferometric observations of FU Ori are performed with the 6-m telescope of the Special Astrophysical Observatory with 600/40 nm and 800/100 nm (central bandwidth/halfwidth) filters. The companion star FU Ori S that was recently discovered at λ >-1.25µm was recorded in observations with the λλ==800/100 nm filter. The positional parameters and magnitude difference of the companion in the filter considered are found to be θ = (163.9 ± 1.0)°, ρ = (0.493 ± 0.007)″, Δm = 3.96 ± 0.28. An analysis of the spectral energy distribution of the companion implies that for the extinction A V toward FU Ori to be greater than about 1.6 m , i.e., the minimum value required by the available models of the fuor, the spectral type of the companion star must be no later than K3. The reliability of this conclusion and the possible ways for obtaining more accurate estimates of A V are discussed.  相似文献   

4.
We measured the radial velocity of the star θ1 Ori D from IUE spectra and used published observations. Based on these data, we determined the period of its radial-velocity variations, P=20.2675±0.0010 days, constructed the phase radial-velocity curve, and solved it by least squares. The spectroscopic orbital elements were found to be the following: the epoch of periastron passage Ep=JD 2430826.6±0.1, the system's center-of-mass velocity /Gg=32.4±1.0 km s?1, K=14.3±1.5 km s?1, Ω=3.3±0.1 rad, e=0.68±0.09, a1 sin i = 3 × 1010 km, and f1 = 0.0025M. Twice the period, P=40.528±0.002 days, is also consistent with the observations.  相似文献   

5.
We present a charged analogue of Pant et al. (2010, Astrophys. Space Sci., 330, 353) solution of the general relativistic field equations in isotropic coordinates by using simple form of electric intensity E that involve charge parameter K. Our solution is well behaved in all respects for all values of X lying in the range 0 <X≤ 0.11, K lying in the range 4 <K≤ 6.2 and Schwarzschild compactness parameter u lying in the range 0 <u≤ 0.247. Since our solution is well behaved for wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X = 0.077 and K = 6.13 for which u = 0.2051 and by assuming surface density ρ b =4.6888×1014 g cm ?3 the mass and radius are found to be 1.509M , 10.906 km respectively which match with the observed values of mass 1.51M and radius 10.90 km of the quark star XTE J1739-217. The well behaved class of relativistic stellar models obtained in this work might have astrophysical significance in the study of more realistic internal structures of compact stars.  相似文献   

6.
We consider a spherically symmetric general relativistic perfect fluid in its comoving frame. It is found that, by integrating the local energy momentum conservation equation, a general form of g 00 can be obtained. During this study, we get a cue that an adiabatically evolving uniform density isolated sphere having ρ(r,t)=ρ 0(t), should comprise “dust” having p 0(t)=0; as recently suggested by Durgapal and Fuloria (J. Mod. Phys. 1:143, 2010) In fact, we offer here an independent proof to this effect. But much more importantly, we find that for the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) metric having p(r,t)=p 0(t) and ρ(r,t)=ρ 0(t), \(g_{00} = e^{-2p_{0}/(p_{0} +\rho_{0})}\). But in general relativity (GR), one can choose an arbitrary tt ?=f(t) without any loss of generality, and thus set g 00(t ?)=1. And since pressure is a scalar, this implies that p 0(t ?)=p 0(t)=0 in the Big-Bang model based on the FRW metric. This result gets confirmed by the fact the homogeneous dust metric having p(r,t)=p 0(t)=0 and ρ(r,t)=ρ 0(t) and the FRW metric are exactly identical. In other words, both the cases correspond to the same Einstein tensor \(G^{a}_{b}\) because they intrinsically have the same energy momentum tensor \(T^{a}_{b}=\operatorname {diag}[\rho_{0}(t), 0,0, 0]\).  相似文献   

7.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

8.
We have identified 22 galaxies with photometric redshifts zph=5–7 in the northern and southern Hubble Space Telescope deep fields. An analysis of the images of these objects shows that they are asymmetric and very compact (~1 kpc) structures with high surface brightness and absolute magnitudes of MB≈?20m. The average spectral energy distribution for these galaxies agrees with the distributions for galaxies with active star formation. The star formation rate in galaxies with zph=5–7 was estimated from their luminosity at λ=1500 Å to be ~30 Myr?1. The spatial density of these objects is close to the current spatial density of bright galaxies. All the above properties of the distant galaxies considered are very similar to those of the so-called Lyman break galaxies (LBGs) with z ~ 3–4. The similarity between the objects considered and LBGs suggests that at z ~6, we observe the progenitors of present-day galaxies that form duringmergers of protogalactic objects and that undergo intense starbursts.  相似文献   

9.
Speckle interferometric observations made with the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 revealed the triple nature of the nearby (π Hip = 51.80 ± 1.74 mas) low-mass young (≈ 200 Myr) star GJ 900. The configuration of the triple system allowed it to be dynamically unstable. Differential photometry performed from 2000 through 2004 yielded I- and K-band absolute magnitudes and spectral types for the components to be I A =6.66±0.08, I B =9.15±0.11, I C =10.08±0.26, K A =4.84±0.08, K B =6.76±0.20, K C =7.39±0.31, Sp A ≈K5?K7, Sp B ≈M3?M4, Sp C ≈M5?M6. The “mass-luminosity” relation is used to estimate the individual masses of the components: M A ≈0.64M , M B ≈0.21M , M C ≈0.13M . From the observations of the components’ relative motion in the period 2000–2006, we conclude that GJ 900 is a hierarchical triple star with the possible orbital periods PA-BC≈80 yrs and PBC≈20 yrs. An analysis of the 2MASS images of the region around GJ 900 leads us to suggest that the system can include other very-low-mass components.  相似文献   

10.
The strongest absorption features with the lower-level excitation potentials χ low < 1 eV are found to be split in the high-resolution optical spectra of the post-AGB star V354 Lac taken in 2007–2008 with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. Main parameters, T eff =5650 K, log g=0.2, ξ t =5.0 km/s, and the abundances of 22 chemical elements in the star’s atmosphere are found. The overabundance of the s-process chemical elements (Ba, La, Ce, Nd) in the star’s atmosphere is partly due to the splitting of strong lines of the ions of thesemetals. The peculiarities of the spectrum in the wavelength interval containing the LiI λ 6707 Å line can be naturally explained only by taking the overabundances of the CeII and SmII heavy-metal ions into account. The best agreement with the synthetic spectrum is achieved assuming ?(LiI)=2.0, ?(CeII)=3.2, and ?(SmII)=2.7. The velocity field both in the atmosphere and in the circumstellar envelope of V354 Lac remained stationary throughout the last 15 years of our observations.  相似文献   

11.
In the present paper, we have obtained a class of charged super dense star models, starting with a static spherically symmetric metric in isotropic coordinates for perfect fluid by considering Hajj-Boutros (in J. Math. Phys. 27:1363, 1986) type metric potential and a specific choice of electrical intensity which involves a parameter K. The resulting solutions represent charged fluid spheres joining smoothly with the Reissner-Nordstrom metric at the pressure free interface. The solutions so obtained are utilized to construct the models for super-dense star like neutron stars (ρ b =2 and 2.7×1014 g/cm3) and Quark stars (ρ b =4.6888×1014 g/cm3). Our solution is well behaved for all values of n satisfying the inequalities \(4 < n \le4(4 + \sqrt{2} )\) and K satisfying the inequalities 0≤K≤0.24988, depending upon the value of n. Corresponding to n=4.001 and K=0.24988, we observe that the maximum mass of quark star M=2.335M and radius R=10.04 km. Further, this maximum mass limit of quark star is in the order of maximum mass of stable Strange Quark Star established by Dong et al. (in arXiv:1207.0429v3, 2013). The robustness of our results is that the models are alike with the recent discoveries.  相似文献   

12.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

13.
High-resolution CCD spectra have been obtained for the first time for the W Virginis star V1 (K 307) in the globular cluster M12 and its closest neighbor K 307b (m pg=14m; the angular distance from the W Vir star is δ<1 arcsec). We determined the fundamental parameters (T eff=5600 K, logg=1.3, and T eff=4200 K, logg=1.0 for the W Vir star and the neighboring star, respectively) and their detailed chemical composition. The derived metallicities of the two stars ([Fe/H]=?1.27 and ?1.22 relative to the solar value) are in good agreement with the metallicities of other cluster members. Changed CNO abundances were found in the atmosphere of the W Vir star: a small carbon overabundance, [C/Fe]=+0.30 dex, and a large nitrogen overabundance, [N/Fe]=+1.15 dex, with oxygen being underabundant, [O/Fe]≈?0.2 dex. The C/O ratio is ≥1. Na and the α-process elements Mg, Al, Si, Ca, and Ti are variously enhanced with respect to iron. We found an enhanced abundance of s-process metals relative to iron: [X/Fe]=+0.34 for Y, Zr, and Ba. The overabundance of the heavier metals La, Ce, and Nd with respect to iron is larger: [X/Fe]=+0.49. The largest overabundance was found for the r-process element europium, [Eu/Fe]=+0.82. The spectrum of the W Vir star exhibits the Hα and Hβ absorption-emission profiles and the He I λ5876 Å emission line, which are traditionally interpreted as a result of shock passage in the atmosphere. However, the radial velocities determined from absorption and emission features are in conflict with the formation pattern of a strong shock. The high luminosity log L/L = 2.98, the chemica peculiarities, and the spectral peculiarity are consistent with the post-AGB evolution in the instability strip. The pattern of relative elemental abundances [X/Fe]in the atmosphere of the neighboring star K 307b is solar. Statistically significant differences were found only for sodium and α-process elements: the mean overabundance of light metals is [X/Fe]=+0.35.  相似文献   

14.
Long-term photometric and spectroscopic observations of the yellow symbiotic star LT Del are analyzed. UBV light curves are presented. Based on the observations of 20 cycles, we have refined the orbital period of the star, P = 476 · d 0 ± 1 · d 0. The brightness has been found to be unstable at some orbital phases with an amplitude up to 0 · m 3. We have measured the fluxes in hydrogen and helium emission lines and in continuum and investigated their relationship to the orbital period. The fluxes in hydrogen and HeI lines follow the UBV light curves in phase; the He II 4686 Å flux does not depend on the phase and is constant within the accuracy of our measurements. The intensity ratio of the 4686 Å andHβ lines changes from 0.2 to 0.9 over the period. We interpret the spectroscopic observations based on the hypothesis of heating and ionization of the stellar wind from a cool component by high-frequency radiation from a hot star with a temperature of 105 K. We have estimated the spectral type of the cool star from our photometry and its continuum energy distribution as a bright K2–4 red giant branch halo star. The bolometric luminosity and mass loss rate have been estimated for the K component to be L bol ~ 700L and \(\dot{M}\) ~ 10?8 M yr?1, respectively.  相似文献   

15.
In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f (R,T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy–momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω(ρ ? ρ ?). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.  相似文献   

16.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

17.
In this paper, we consider the inverse problem of central configurations of n-body problem. For a given \({q=(q_1, q_2, \ldots, q_n)\in ({\bf R}^d)^n}\), let S(q) be the admissible set of masses denoted \({ S(q)=\{ m=(m_1,m_2, \ldots, m_n)| m_i \in {\bf R}^+, q}\) is a central configuration for m}. For a given \({m\in S(q)}\), let S m (q) be the permutational admissible set about m = (m 1, m 2, . . . , m n ) denoted
$S_m(q)=\{m^\prime | m^\prime\in S(q),m^\prime \not=m \, {\rm and} \, m^\prime\,{\rm is\, a\, permutation\, of }\, m \}.$
The main discovery in this paper is the existence of a singular curve \({\bar{\Gamma}_{31}}\) on which S m (q) is a nonempty set for some m in the collinear four-body problem. \({\bar{\Gamma}_{31}}\) is explicitly constructed by a polynomial in two variables. We proved:
  1. (1)
    If \({m\in S(q)}\), then either # S m (q) = 0 or # S m (q) = 1.
     
  2. (2)
    #S m (q) = 1 only in the following cases:
    1. (i)
      If s = t, then S m (q) = {(m 4, m 3, m 2, m 1)}.
       
    2. (ii)
      If \({(s,t)\in \bar{\Gamma}_{31}\setminus \{(\bar{s},\bar{s})\}}\), then either S m (q) = {(m 2, m 4, m 1, m 3)} or S m (q) = {(m 3, m 1, m 4, m 2)}.
       
     
  相似文献   

18.
We report the results of our optical speckle interferometric observations of the nearby triple system GJ 795 performed with the 6 m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with diffraction-limited angular resolution. The three components of the system were optically resolved for the first time. Position measurements allowed us to determine the elements of the inner orbit of the triple system. We use the measured magnitude differences to estimate the absolute magnitudes and spectral types of the components of the triple: M V Aa =7.31±0.08, M V Ab =8.66±0.10, M V B =8.42±0.10, Sp Aa≈K5, Sp Ab≈K9, Sp B ≈K8. The total mass of the system is equal to ΣM AB =1.69±0.27M . We show GJ795 to be a hierarchical triple system which satisfies the empirical stability criteria.  相似文献   

19.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

20.
New photometric observations of the variable star FG Sge, a rapidly evolving planetary nebula nucleus, were performed in 2003–2008. On 230 nights, we obtained 86 UBV and 155 BV RI (or R c , I c ) magnitude estimates. The maximum amplitude of the V-band light variations was >8 m . Six deep minima and four high maxima were observed. Analysis of the light curve has shown that the pulsation period of the star remained constant since 1991 and was P = 115 days. We have studied the wavelength dependence of the extinction at various phases of the light curve. The blueing of the B-V color at deep minima is interpreted as the result of light scattering in the circumstellar dust shell of the star formed by preceding dust ejections since 1992. Our spectroscopic observations performed on nine nights in 2003–2007 with the 125-cm telescope at the Crimean Station of the Sternberg Institute have confirmed the previously detected intensity variations of the Swan bands and the sodium doublet with brightness. It is noted that the Swan bands originate in the upper atmosphere, the star’s extended envelope, while the sodium doublet originates mainly in the circumstellar shell of FG Sge. We suggest that the star is currently located in the temperature-luminosity diagram at the turning point of the horizontal track of cooling in the direction of hot stars—evolution caused by the last helium shell flash at the planetary nebula stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号