首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The New River crosses three physiogeologic provinces of the ancient, tectonically quiescent Appalachian orogen and is ideally situated to record variability in fluvial erosion rates over the late Cenozoic. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, thick sequences of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. We used cosmogenic 10Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, to constrain the timing of events in this history. 10Be concentration depth profiles were used to help account for variables such as cosmogenic inheritance and terrace bioturbation. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield model cosmogenic exposure ages of 130, 600, and 600–950 ka, respectively, but uncertainties on these ages are not well constrained. These results provide the first direct constraint on the history of alluvial aggradation and incision events recorded by New River terrace deposits. The exposure ages yield a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 100 m/my. Modern erosion rates on bedrock at a prominent knickpoint are between 28 and 87 m/my, in good agreement with rates calculated between terrace abandonment events and significantly faster than 2 m/my rates of surface erosion from ancient terrace remnants. Fluctuations between aggradation and rapid incision operate on timescales of 104− 105 year, similar to those of late Cenozoic climate variations, though uncertainties in model ages preclude direct correlation of these fluctuations to specific climate change events. These second-order fluctuations appear within a longer-term signal of dominant aggradation (until 2 Ma) followed by dominant incision. A similar signal is observed on other Appalachian rivers and may be the result of sediment supply fluctuations driven by the increased frequency of climate changes in the late Cenozoic.  相似文献   

2.
Low-temperature apatite (U–Th)/He (AHe) thermochronology on vertical transects of leucogranite stocks and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating on strath terraces in the Lahul Himalaya provide a first approximation of long-term (104–106 years) exhumation rates for the High Himalayan Crystalline Series (HHCS) for northern India. The AHe ages show that exhumation of the HHCS in Lahul from shallow crustal levels to the surface was ~ 1–2 mm/a and occurred during the past ~ 2.5 Ma. Bedrock exhumation in Lahul fits into a regional pattern in the HHCS of low-temperature thermochronometers yielding Plio-Pleistocene ages. Surface exposure ages of strath terraces along the Chandra River range from ~ 3.5 to 0.2 ka. Two sites along the Chandra River show a correlation between TCN age and height above the river level yielding maximum incision rates of 12 and 5.5 mm/a. Comparison of our AHe and surface exposure ages from Lahul with thermochronometry data from the fastest uplifting region at the western end of the Himalaya, the Nanga Parbat syntaxis, illustrates that there are contrasting regions in the High Himalaya where longer term (105–107 years) erosion and exhumation of bedrock substantially differ even though Holocene rates of fluvial incision are comparable. These data imply that the orogen's indenting corners are regions where focused denudation has been stable since the mid-Pliocene. However, away from these localized areas where there is a potent coupling of tectonic and surface processes that produce rapid uplift and denudation, Plio-Pleistocene erosion and exhumation can be characterized by disequilibrium, where longer term rates are relatively slower and shorter term fluvial erosion is highly variable over time and distance. The surface exposure age data reflect differential incision along the length of the Chandra River over millennial time frames, illustrate the variances that are possible in Himalayan river incision, and highlight the complexity of Himalayan environments.  相似文献   

3.
Allen G. Hunt  Joan Q. Wu   《Geomorphology》2004,58(1-4):263-289
A detailed study of a small hill in NE Mojave Desert in eastern California was conducted to elucidate the effect of climate on the variations in soil erosion rates through Holocene. Field surveys and sampling were carried out to obtain information on topography, geomorphology, soil and vegetation conditions, seismic refraction, sediment deposition, and hillslope processes. Integration of this information allowed reconstruction of the hill topography at the end of the Pleistocene, deduction of the evolution of the hill from the end of the Pleistocene to the present, and estimation of total soil losses resulting from various hillslope processes. The estimates are consistent with the premise that early Holocene climate change resulted in vegetation change, soil destabilization, and topographic roughening. Current, very slow, hillslope transport rates (e.g., 5 mm ky−1 by rodent burrowing, a presently important transport form) appear inconsistent with the inferred total soil loss rate (31 mm ky−1). Packrat midden studies imply that the NE Mojave Desert experienced enhanced monsoonal precipitation in the early Holocene, presumably accentuating soil loss. Water erosion on one slope of the hill was simulated using Water Erosion Prediction Project (WEPP), a process-based erosion model, using 4 and 6 ky of precipitation input compatible with an appropriate monsoonal climate and the present climate, respectively. The WEPP-predicted soil losses for the chosen slope were compatible with inferred soil losses. Identification of two time periods within the Holocene with distinct erosion characteristics may provide new insight into the current state of Mojave Desert landform evolution.  相似文献   

4.
The Southern Alps of New Zealand are the topographic expression of active oblique continental convergence of the Australian and Pacific plates. Despite inferred high rates of tectonic and climatic forcing, the pattern of differential uplift and erosion remains uncertain. We use a 25-m DEM to conduct a regional-scale relief analysis of a 250-km long strip of the western Southern Alps (WSA). We present a preliminary map of regional erosion and denudation by overlaying mean basin relief, a modelled stream-power erosion index, river incision rates, historic landslide denudation rates, and landslide density. The interplay between strong tectonic and climatic forcing has led to relief production that locally attains 2 km in major catchments, with mean values of 0.65–0.68 km. Interpolation between elevations of major catchment divides indicates potential removal of l01–103 km3, or a mean basin relief of 0.51–0.85 km in the larger catchments. Local relief and inferred river incision rates into bedrock are highest about 50–67% of the distance between the Alpine fault and the main divide. The mean regional relief variability is ± 0.5 km.Local relief, valley cross-sectional area, and catchment width correlate moderately with catchment area, and also reach maximum values between the range front and the divide. Hypsometric integrals show scale dependence, and together with hypsometric curves, are insufficient to clearly differentiate between glacial and fluvial dominated basins. Mean slope angle in the WSA (ψ = 30°) is lower where major longitudinal valleys and extensive ice cover occur, and may be an insensitive measure of regional relief. Modal slope angle is strikingly uniform throughout the WSA (φ = 38–40°), and may record adjustment to runoff and landsliding. Both ψ and φ show non-linear relationships with elevation, which we attribute to dominant geomorphic process domains, such as fluvial processes in low-altitude valley trains, surface runoff and frequent landsliding on montane hillslopes, “relief dampening” by glaciers, and rock fall/avalanching on steep main-divide slopes.  相似文献   

5.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

6.
Fire can alter sediment sources and transport rates in river basins, changing landforms and aquatic habitats and degrading downstream water quality. Variability in the response between environments, between fires, and with time since fire makes predicting the catchment-scale effect of individual fires difficult. This study applies the fallout radionuclides 137Cs and 210Pbxs to trace the sources and transport of fine sediment through a river network following a wildfire of moderate to extreme severity in the 629-km2 eucalypt-forested Nattai River water-supply catchment near Sydney, Australia. The tracer analysis showed that post-fire erosion caused a switch in fine (< 10 µm) sediment sources from 80% subsoil derived from gully and river bank erosion to 86% topsoil derived from hillslope surface erosion. The fine sediment phosphorus content increased 4–10 fold over pre-fire levels. Annual post-fire sediment yields estimated from suspended solids rating curves were 109–250 times higher than they would have been without fire. A large additional amount of sediment remained stored within the river network for at least four years, particularly in lower-gradient reaches. Analysis of a sediment core showed that surface erosion following a previous fire had supplied at least 29% of total catchment sediment yield over the past 36 years. It is concluded that wildfire can alter catchment sediment budgets in two ways. Firstly, a spatially-diffuse pulse of elevated erosion is associated with moderate or intense rainfall events in post-fire years. Secondly, pulses of elevated catchment sediment yield are driven by the timing and river sediment transport capacity of runoff events. Severe post-fire erosion and high interannual hydrologic variability can result in large sediment stores persisting within the river network for many years. Fallout radionuclide tracers are shown to be useful in quantifying fine sediment sources and transport dynamics following wildfire, and the contribution of wildfire to catchment sediment yield.  相似文献   

7.
The River Ganga in the central Gangetic plain shows the incision of 20 m of Late Quaternary sediments that form a vast upland terrace (T2). The incised Ganga River Valley shows two terraces, namely the river valley (terrace-T1) and the present-day flood plain (terrace-T0). Terrace-T1 shows the presence of meander scars, oxbow lakes, scroll plains, which suggests that a meandering river system prevailed in the past. The present-day river channel flows on terrace-T0 and is braided, sensu stricto. It is thus inferred that the River Ganga experienced at least two phases of tectonic adjustments: (1) incision and (2) channel metamorphosis from meandering to braided.Optical dating of samples from three different terraces has bracketed the phase of incision to be <6 and 4 ka. Different ages of the top of terrace-T2 show that this surface experienced differential erosion due to tectonic upwarping in the region, which also caused the river incision. River metamorphosis occurred some time during 4 and 0.5 ka.  相似文献   

8.
Terrestrial cosmogenic nuclide (TCN) 10Be surface exposure ages for strath terraces along the Braldu River in the Central Karakoram Mountains range from 0.8 to 11 ka. This indicates that strath terrace formation began to occur rapidly upon deglaciation of the Braldu valley at  11 ka. Fluvial incision rates for the Braldu River based on the TCN ages for strath terraces range from 2 to 29 mm/a. The fluvial incision rates for the central gorged section of the Braldu River are an order of magnitude greater than those for the upper and lower reaches. This difference is reflected in the modern stream gradient and valley morphology. The higher incision rates in the gorged central reach of the Braldu River likely reflect differential uplift above the Main Karakoram Thrust that has resulted in the presence of a knickpoint and more rapid fluvial incision. The postglacial fluvial incision rate (2–3 mm/a) for the upper and lower reaches are of the same order of magnitude as the exhumation rates estimated from previously published thermochronological data for the Baltoro granite in the upper catchment region and for the adjacent Himalayan regions.  相似文献   

9.
This paper explores the effects of hillslope mobility on the evolution of a 10-km2 drainage basin located at the northern border of the Swiss Alps. It uses geomorphologic maps and the results of numerical models that are based on the shear stress formulation for fluvial erosion and linear diffusion for hillslope processes. The geomorphic data suggest the presence of landscapes with specific cross-sectional geometries reflecting variations in the relationships between processes in channels and on hillslopes. In the headwaters, the landscape displays parabolic cross-sectional geometries indicating that mass delivered to channels by hillslope processes is efficiently removed. In the trunk stream portion, the landscape is (i) V-shaped if the downslope flux of mass is balanced by erosion in channels (i.e. if mass delivered to channels by hillslope processes is efficiently removed) and (ii) U-shaped if in-channel accumulation of hillslope-derived material occurs. This latter situation indicates a non-balanced mass flux between processes in channels and on hillslopes.Information about the spatial pattern of the postglacial depth of erosion allows comparative estimates to be made about the erosional efficiency for the various landscapes that were mapped in the study area. The data suggest that the erosional potential and sediment discharge are reduced for the situation of a non-balanced mass flux between processes in channels and on hillslopes. These findings are also supported by the numerical model. Indeed, the model results show that high hillslope mobility tends to reduce the hillslope relief and to inhibit dissection and formation of channels. In contrast, stable hillslopes tend to promote fluvial incision, and the hillslope relief increases. The model results also show that very low erosional resistance of bedrock promotes backward erosion and steepening of channel profiles in headwaters. Beyond that, the model reveals that sediment discharge generally increases with decreasing erosional resistance of bedrock, but that this increase decays exponentially with increasing magnitudes of fluvial and hillslope mobilities. Very high hillslope diffusivities even tend to reduce the erosional potential of the whole watershed. It appears that besides rates of base-level lowering, factors limiting sediment discharge might be the nonlinear relationships between processes in channels and on hillslopes.  相似文献   

10.
The sediment flux generated by postglacial channel incision has been calculated for the 2150 km2, non-glacial, Waipaoa catchment located on the tectonically active Hikurangi Margin, eastern North Island, New Zealand. Sediment production both at a sub-catchment scale and for the Waipaoa catchment as a whole was calculated by first using the tensioned spline method within ARC MAP to create an approximation of the aggradational Waipaoa-1 surface (contemporaneous with the Last Glacial Maximum), and second using grid calculator functions in the GIS to subtract the modern day surface from the Waipaoa-1 surface. The Waipaoa-1 surface was mapped using stereo aerial photography, and global positioning technology fixed the position of individual terrace remnants in the landscape. The recent discovery of Kawakawa Tephra within Waipaoa-1 aggradation gravels in this catchment demonstrates that aggradation was coincidental with or began before the deposition of this 22 600 14C-year-old tephra and, using the stratigraphic relationship of Rerewhakaaitu Tephra, the end of aggradation is dated at ca 15 000 14C years (ca 18 000 cal. years BP). The construction of the Waipaoa-1 terrace is considered to be synchronous and broadly correlated with aggradation elsewhere in the North Island and northern South Island, indicating that aggradation ended at the same time over a wide area. Subsequent downcutting, a manifestation of base-level lowering following a switch to postglacial incision at the end of glacial-age aggradation, points to a significant Southern Hemisphere climatic warming occurring soon after ca 15 000 14C years (ca 18 000 cal. years BP) during the Older Dryas interval. Elevation differences between the Waipaoa-1 (c.15 ka) terrace and the level of maximum channel incision (i.e. before aggradation since the turn of the 20th century) suggest about 50% of the topographic relief within headwater reaches of the Waipaoa catchment has been formed in postglacial times. The postglacial sediment flux generated by channel incision from Waipaoa catchment is of the order of 9.5 km3, of which ~ 6.6 km3 is stored within the confines of the Poverty Bay floodplain. Thus, although the postglacial period represented a time of high terrigenous sediment generation and delivery, only ~ 30% of the sediment generated by channel incision from Waipaoa catchment probably reached the marine shelf and slope of the Hikurangi Margin during this time. The smaller adjacent Waimata catchment probably contributed an additional 2.6 km3 to the same depocentre to give a total postglacial sediment contribution to the shelf and beyond of ~ 5.5 km3. Sediment generated by postglacial channel incision represents only ~ 25% of the total sediment yield from this landscape with ~ 75% of the estimated volume of the postglacial storage offshore probably derived from hillslope erosion processes following base-level fall at times when sediment yield from these catchments exceeded storage.  相似文献   

11.
12.
Dozens of references recognizing pediment landforms in widely varying lithologic, climatic, and tectonic settings suggest a ubiquity in pediment forming processes on mountain piedmonts worldwide. Previous modeling work illustrates the development of a unique range in arid/semiarid piedmont slope (< 0.2 or 11.3°) and regolith thickness (2–4 m) that defines pediments, despite varying the initial conditions and domain characteristics (initial regolith thickness, slope, distance from basin to crest, topographic perturbations, and boundary conditions) and process rates (fluvial sediment transport efficiency and weathering rates). This paper expands upon the sensitivity analysis through numerical simulation of pediment development in the presence of spatially varying rock type, various base level histories, various styles of sediment transport, and various rainfall rates to determine how pediment development might be restricted in certain environments. This work suggests that in landscapes characterized by soil and vegetation types that favor incisive fluvial sediment transport styles coupled with incisive base level conditions, pediment development will be disrupted by the roughening of sediment mantled surfaces, thereby creating spatial variability in topography, regolith thickness, and bedrock weathering rates. Base level incision rates that exceed the integrated sediment flux along a hillslope derived from upslope weathering and sediment transport on the order of 10− 3 m y− 1 restrict pediment development by fostering piedmont incision and/or wholesale removal (stripping) of regolith mantles prior to footslope pediment development. Simulations illustrate an insensitivity to alternating layers of sandstone and shale 3–15 m thick oriented in various geometric configurations (vertical, horizontal, and dip-slope) and generating different regolith hydrologic properties and exhibiting weathering rate variations up to 3-fold. Higher fluxes and residence times of subsurface groundwater in more humid environments, as well as dissolution-type weathering, lead to a thickening of regolith mantles on erosional piedmonts on the order of 101 m and an elimination of pediment morphology. An initial test of the model sensitivity analysis in arid/semiarid environments, for which field reconnaissance and detailed geomorphic mapping indicate the presence of pediments controlled by climatic conditions (soil hydrologic properties, vegetation characteristics, and bedrock weathering style) that are known and constant, supports our modeling results that pediments are more prevalent in hydrologically-open basins.  相似文献   

13.
Soil profiles, colluvial stratigraphy, and detailed hillslope morphology are key elements used for geomorphic interpretations of the form and long-term evolution of triangular facets on a 1200 m high, tectonically active mountain front. The facets are developed on Precambrian gneisses and Tertiary volcanic and plutonic rocks along a complexly segmented, active normal-fault zone in the Rio Grande rift of northern New Mexico. The detailed morphologies of 20− to 350 m high facets are defined by statistical and time-series analyses of 40 field transects that were keyed to observations of colluvium, bedrock, microtopography, and vegetation. The undissected parts of most facets are transport-limited hillslopes mantled with varying thicknesses (0.1 to > 1 m thick) of sand and gravel colluvium between generally sparse (≤10–30%) bedrock outcrops. Facet soils range from (a) thin (≤ 0.2 m) weakly developed soils with cumulic silty A or transitional A/B epipedons above Cox horizons in bedrock or colluvium, to (b) deep (≥0.5–1 m) moderately to strongly developed profiles containing thick cambic (Bw) and/or argillic (Bt) horizons that commonly extend into highly weathered saprolitic bedrock. The presence of strongly weathered profiles and thick colluvium suggests that rates of colluvial transport and hillslope erosion are less than or equal to rates of soil development over at least a large part of the Holocene.The catenary variation of soils and colluvium on selected facet transects indicate that the degree of soil development generally increases and the thickness of colluvium decreases upslope on most facets. This overall pattern is commonly disrupted on large facet hillslopes by irregular secondary soil variations linked to intermediate-scale (20–60 + m long) concave slope elements. These features are interpreted to reflect discontinuous transport and erosion of colluvium down-slope below bedrock outcrops. The degree of weathering in subsurface bedrock commonly increases more systematically upslope on most facets than colluvial soils. This pattern is consistent with an increase in age with height on these fault-generated facet hillslopes.The characteristic range of internal variation in soils and colluvial deposits on a given facet also varies greatly among facets with differing overall morphologies and external environments. Deep cumulic soils and thick colluvium occur consistently on steep (≥ 30°), high, and relatively undissected facets above the narrow central sections of fault segments. Much thinner and less weathered colluvium and soils overlie saprolitic bedrock at shallow depths on low, highly dissected, gently sloping (≤ 20°) facets above complex fault segment boundaries. Parametric and nonparametric analyses of variance indicate that these large-scale contrasts in facet morphology correlate primarily with a few facet subgroups related, in decreasing importance, to variations in range-front faulting, bedrock lithology, and piedmont dissection or aggradation. These factors are related to facet morphology, drainage evolution, and hillslope-soil stratigraphy in a general geomorphic model for fault-generated facets. In this model, segmentation-related changes in the geometry and/or rates of faulting most strongly affect facet size, slope gradient, the thickness of colluvium and soil development, and drainage patterns. Facets of varying heights have similar hillslope forms at the same position on the range front; these characteristic morphologies are established under prevailing tectonic and nontectonic conditions on facets as bedrock is initially exposed from beneath alluvial-covered fault scarps above a height threshold of 15–35 m.  相似文献   

14.
We have monitored initiation conditions for six debris flows between May 2004 and July 2006 in a 0.3 km2 drainage basin at Chalk Cliffs; a band of hydrothermally-altered quartz monzonite in central Colorado. Debris flows were initiated by water runoff from colluvium and bedrock that entrained sediment from rills and channels with slopes ranging from about 14° to 45°. The availability of channel material is essentially unlimited because of thick channel fill and refilling following debris flows by rock fall and dry ravel processes. Rainfall exceeding I = 6.61(D)− 0.77, where I is rainfall intensity (mm/h), and D is duration (h), was required for the initiation of debris flows in the drainage basin. The approximate minimum runoff discharge from the surface of bedrock required to initiate debris flows in the channels was 0.15 m3/s. Colluvium in the basin was unsaturated immediately prior to (antecedent) and during debris flows. Antecedent, volumetric moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 4–9%, and 4–7%, respectively. During debris flows, peak moisture levels in colluvium at depths of 1 cm and 29 cm ranged from 10–20%, and 4–12%, respectively. Channel sediment at a depth of 45 cm was unsaturated before and during debris flows; antecedent moisture ranged from 20–22%, and peak moisture ranged from 24–38%. Although we have no measurements from shallow rill or channel sediment, we infer that it was unsaturated before debris flows, and saturated by surface-water runoff during debris flows.Our results allow us to make the following general statements with regard to debris flows generated by runoff in semi-arid to arid mountainous regions: 1) high antecedent moisture levels in hillslope and channel sediment are not required for the initiation of debris flows by runoff, 2) locations of entrainment of sediment by successive runoff events can vary within a basin as a function of variations in the thickness of existing channel fill and the rate of replenishment of channel fill by rock fall and dry ravel processes following debris flows, and 3) rainfall and simulated surface-water discharge thresholds can be useful in understanding and predicting debris flows generated by runoff and sediment entrainment.  相似文献   

15.
Transient landscape disequilibrium is a common response to climatic fluctuations between glacial and interglacial conditions. Such landscapes are best suited to the investigation of catchment-wide response to changes in incision. The geomorphology of the Trub and Grosse Fontanne, adjacent stream systems in the Napf region of the Swiss Molasse, was analyzed using a 2-m LIDAR DEM. The two catchments were impacted by the Last Glacial Maximum, LGM, even though the glaciers never overrode this region. They did, however, cause base levels to drop by as much as 80 m. Despite their similar tectonic, lithologic and climatic settings, these two basins show very different responses to the changing boundary conditions. Stream profiles in the Trub tend to be smooth, while in the Fontanne, numerous knickzones are visible. Similarly, cut-and-fill terraces are abundant in the Trub watershed, but absent in the Fontanne, where deep valleys have been incised. The Trub appears to be a coupled hillslope–channel system because the morphometrics throughout the basin are uniform. The morphology of hillslopes upstream of the knickzones in the Fontanne is identical to that of the Trub basin, but different downstream of the knickzones, suggesting that the lower reaches of the Fontanne have been decoupled from the hillslopes. However, the rapid incision of the Fontanne is having little effect on the adjacent upper hillslopes.We tested this interpretation using cosmogenic 10Be-derived basin-averaged denudation rates and terrace dating. The coupled nature of the Trub basin is supported by the similarity of denudation rates, 350 ± 50 mm ky− 1, at a variety of spatial scales. Upstream of the knickzones, rates in the Fontanne, 380 ± 50 mm ky− 1, match those of the Trub. Downstream of the knickzones, denudation rates increase to 540 ± 100 mm ky− 1. The elevated rates in the downstream areas of the Fontanne are due to rapid incision causing a decoupling of the hillslope from the channel. Basin response time and the magnitude of base level drop exert the principal control over the difference in geomorphic response between the two basins. The timing of the filling of the Trub valley, 17 ± 2 ka, and the initial incision of the Fontanne, 16 ± 3 ka, were calculated, verifying that these are responses to late glacial perturbations. Unique lithologic controls allow for one of the fastest regolith production rates yet to be reported,  380 mm ky− 1.  相似文献   

16.
《Geomorphology》2007,83(1-2):97-120
The quantification of geomorphic process rates on the outcrop- and the orogen-scale is important to describe accurately the interaction between the relative effects of erosion, tectonics and climate on landscape evolution. We report single and paired cosmogenic nuclide (10Be, 26Al and 21Ne) derived erosion rates and exposure ages on hillslope interfluves from the tectonically active western central Andes that show a distinct spatial variation. A positive correlation of erosion rates with elevation and present-day rainfall rates is observed. Erosion rates at lower altitudes–the hyperarid Coastal Cordillera and the Western Escarpment with the northern part of the Atacama Desert–are extremely low and of the order of 10–100 cm/My (nominal exposure ages 1–6 My). In contrast, erosion rates at higher altitudes–the semiarid Western Cordillera–range up to 4600 cm/My (nominal exposure ages 0.02–0.1 My). This latter average long-term bedrock erosion rate record, suggested to be coupled to an orographically controlled pattern of rainfall, is also reflected in the pattern of denudation rates derived from a short-term decadal record of limited sediment yield data. Specifically, denudation rates calculated from sediment flux data are of a similar order of magnitude as erosion rates deduced from long-lived cosmogenic nuclides from bedrock hillslope interfluves of the Western Cordillera. Nevertheless, the production and the supply of sediment from the western Andean slope are very limited.Analysis of multiple cosmogenic nuclides allows simultaneous determination of erosion rates and exposure ages but also reveals complex exposure histories of non-bedrock samples, such as boulders or amalgamated clast samples. Notably, this study shows that saturation of nuclides, usually assumed in studies where only a single nuclide is analyzed, is rather the exception than the rule, as revealed by erosion island plots. Constant erosion that started much later than the formation age of the rocks or episodic erosion by spalling can partially explain non-steady-state concentrations and more complicated exposure scenarios. Furthermore, the use of multiple nuclides with different half-lives allowed us to infer that no significant variations in long-term erosion rates have occurred and that at the Western Escarpment erosion rates have been low and constant for most of the late Neogene. Nevertheless, the time intervals necessary to reach steady-state concentrations for cosmogenic nuclides can be quite different from those needed for landscapes to reach steady state.  相似文献   

17.
The Malnant River is a rapidly incising river with a French name that translates as “bad creek,” reflecting local opinion of the hazards from dramatic channel changes that have occurred in the last few centuries. Downcutting in the last three decades has created severe problems for farmers in this small watershed (16 km2) as bridges are undermined, streamside roads are threatened, and irrigation diversion structures are rendered unusable. The purpose of our study was to determine the extent and causes of downcutting. A detailed landcover map dated 1732 revealed that forest cover had been reduced by that time to 10% of the present-day cover. The Malnant was strongly affected by floods and debris torrents during the 18th and 19th centuries that delivered massive amounts of sediment. During the 20th century, reforestation reduced the sediment delivery from hillslopes. In addition, gravel extraction in the Malnant and in the Fier River (of which the Malnant is a tributary) has lowered the base level for the river. This initiated a knickpoint that moved upstream. Weirs placed in the Malnant in 1968 were used to measure rates of bed incision in the field. With a mean width of 4.0 m and degradation up to 36 cubic meters per meter channel length, the lower 4.5 km of the Malnant has experienced a net loss of approximately 163,000 m3 of bed material. Above the 4.5-km point on the Malnant, bedrock controls exist that have arrested the upstream-progressing degradation.  相似文献   

18.
Landscapes in southeastern Australia have changed dramatically since the spread of European colonisation in the 19th century. Due to widespread forest clearance for cultivation and grazing, erosion and sediment yields have increased by a factor of more than 150. In the 20th century, erosion and sediment yield were reduced again due to an increasing vegetative cover. Furthermore, during the last decades, thousands of small farm dams were constructed to provide drinking water for cattle. These dams trap a lot of sediment, thereby further reducing sediment delivery from hillslopes to river channels. Changes in sediment delivery since European colonisation are documented in sediment archives. Within this study, these changing rates in hillslope erosion and sediment delivery were modelled using a spatially distributed erosion and sediment delivery model (WATEM/SEDEM) that was calibrated for Australian ecosystems using sediment yield data derived from sedimentation rates in 26 small farm dams. The model was applied to the Murrumbidgee river basin (30,000 km2) under different land-use scenarios. First, the erosion and sediment yield under pre-European land-use was modelled. Secondly, recent land-use patterns were used in the model. Finally, recent land-use including the impact of farm dams and large reservoirs was simulated. The results show that the WATEM/SEDEM model is capable of predicting the intensity of the geomorphic response to changes in land-use through time. Changes in hillslope erosion and hillslope sediment delivery rates are not equal, illustrating the non-linear response of the catchment. Current hillslope sediment supply to the river channel network is predicted to be 370% higher compared to the pre-European settlement period, yet farm dams have reduced this back to 2.5 times the pre-19th century values. The role of larger reservoirs is even more important as they have reduced the current sediment supply downstream to their pre-European values, thus completely masking the increased hillslope erosion rates from land-use change. However, the model does so far not include valley widening and sediment storage in river systems. Therefore, modelled rates of sediment delivery are lower than observed values.  相似文献   

19.
The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to  400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.  相似文献   

20.
Although dam removal has been increasingly used as an option in dam management, and as a river restoration tool, few studies provide detailed quantitative assessment of the geomorphological response of rivers to dam removal. In this study, we document the response of the Pine River, Michigan, to the gradual removal of Stronach Dam. In 1996, prior to the initiation of removal, 31 permanent cross-sectional transects were established in the 10-km study area. These transects were surveyed annually during the course of the removal (1996–2003) and for the three years following removal (2004–2006). Dam removal resulted in progressive headcutting of sediments in the former impoundment, extending upstream 3.89 km of the dam. Over the course of the 10 years since dam removal was initiated, a net total of 92 000 m3 of sediment erosion occurred. The majority of sediments stored in the former reservoir remained in place, with only 12% of the estimated reservoir sediment fill being eroded. Approximately 14% of the net erosion was deposited within the stream channel 1 km downstream of the dam location, with the remainder being transported further downstream or deposited in the floodplain. Sediment fill incision resulted in a narrower and deeper channel upstream, with higher mean water velocity and somewhat coarser substrates. Downstream deposition resulted in a wider and shallower channel, with little change in substrate size composition. Counter-intuitively, water velocity also increased downstream because of the increased slope that developed. Prior to removal, bedforms in the former impoundment were dominated by runs but are showing signs of restoration toward reference conditions. Continuing changes in river geomorphology are evident even three years following removal and are likely to occur for years to come.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号