首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in the propagation of globally propagating disturbances (commonly called “EIT waves”) through the low solar corona offer a unique opportunity to probe the plasma parameters of the solar atmosphere. Here, high-cadence observations of two “EIT wave” events taken using the Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) are combined with spectroscopic measurements from the Extreme ultraviolet Imaging Spectrometer (EIS) onboard the Hinode spacecraft and used to examine the variability of the quiet coronal magnetic-field strength. The combination of pulse kinematics from SDO/AIA and plasma density from Hinode/EIS is used to show that the magnetic-field strength is in the range ≈?2?–?6 G in the quiet corona. The magnetic-field estimates are then used to determine the height of the pulse, allowing a direct comparison with theoretical values obtained from magnetic-field measurements from the Helioseismic and Magnetic Imager (HMI) onboard SDO using global-scale PFSS and local-scale extrapolations. While local-scale extrapolations predict heights inconsistent with prior measurements, the agreement between observations and the PFSS model indicates that “EIT waves” are a global phenomenon influenced by global-scale magnetic field.  相似文献   

2.
We consider the problem of automatically (and robustly) isolating and extracting information about waves and oscillations observed in EUV image sequences of the solar corona with a view to near real-time application to data from the Atmospheric Imaging Array (AIA) on the Solar Dynamics Observatory (SDO). We find that a simple coherence/travel-time based approach detects and provides a wealth of information on transverse and longitudinal wave phenomena in the test sequences provided by the Transition Region and Coronal Explorer (TRACE). The results of the search are pruned (based on diagnostic errors) to minimize false-detections such that the remainder provides robust measurements of waves in the solar corona, with the calculated propagation speed allowing automated distinction between various wave modes. In this paper we discuss the technique, present results on the TRACE test sequences, and describe how our method can be used to automatically process the enormous flow of data (≈1 Tb day−1) that will be provided by SDO/AIA. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

3.
Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high-cadence synoptic data provided by the Solar Dynamics Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) were found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.  相似文献   

4.
On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet (EUV) wave front recorded by the Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the Appareil de Routine pour le Traitement et l’Enregistrement Magnetique de l’Information Spectral (ARTEMIS IV) radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wave front and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indicate that the expansion of the CME ejecta is the source for both EUV and radio shock emissions. Early in the CME expansion phase, the Type-II burst seems to originate in the sheath region between the EUV bubble and the EUV shock front in both radial and lateral directions. This suggests that both the nose and the flanks of the expanding bubble could have driven the shock.  相似文献   

5.
Multi-wavelength solar images in the extreme ultraviolet (EUV) are routinely used for analysing solar features such as coronal holes, filaments, and flares. However, images taken in different bands often look remarkably similar, as each band receives contributions coming from regions with a range of different temperatures. This has motivated the search for empirical techniques that may unmix these contributions and concentrate salient morphological features of the corona in a smaller set of less redundant source images. Blind Source Separation (BSS) does precisely this. Here we show how this novel concept also provides new insight into the physics of the solar corona, using observations made by SDO/AIA. The source images are extracted using a Bayesian positive source-separation technique. We show how observations made in six spectral bands, corresponding to optically thin emissions, can be reconstructed by a linear combination of three sources. These sources have a narrower temperature response and allow for considerable data reduction, since the pertinent information from all six bands can be condensed into a single composite picture. In addition, they give access to empirical temperature maps of the corona. The limitations of the BSS technique and some applications are briefly discussed.  相似文献   

6.
In our previous articles (Chertok et al. in Solar Phys. 282, 175, 2013; Chertok et al. in Solar Phys. 290, 627, 2015), we presented a preliminary tool for the early diagnostics of the geoeffectiveness of solar eruptions based on the estimate of the total unsigned line-of-sight photospheric magnetic flux in accompanying extreme ultraviolet (EUV) arcades and dimmings. This tool was based on the analysis of eruptions observed during 1996?–?2005 with the Extreme-ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). Empirical relationships were obtained to estimate the probable importance of upcoming space weather disturbances caused by an eruption, which just occurred, without data on the associated coronal mass ejections. In particular, it was possible to estimate the intensity of a non-recurrent geomagnetic storm (GMS) and Forbush decrease (FD), as well as their onset and peak times. After 2010?–?2011, data on solar eruptions are obtained with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We use relatively short intervals of overlapping EIT–AIA and MDI–HMI detailed observations, and additionally, a number of large eruptions over the next five years with the 12-hour cadence EIT images to adapt the SOHO diagnostic tool to SDO data. We show that the adopted brightness thresholds select practically the same areas of arcades and dimmings from the EIT 195 Å and AIA 193 Å image, with a cross-calibration factor of 3.6?–?5.8 (5.0?–?8.2) for the AIA exposure time of 2.0 s (2.9 s). We also find that for the same photospheric areas, the MDI line-of-sight magnetic flux systematically exceeds the HMI flux by a factor of 1.4. Based on these results, the empirical diagnostic relationships obtained from SOHO data are adjusted to SDO instruments. Examples of a post-diagnostics based on SDO data are presented. As before, the tool is applicable to non-recurrent GMSs and FDs caused by nearly central eruptions from active regions, provided that the southern component of the interplanetary magnetic field near the Earth is predominantly negative, which is not predicted by this tool.  相似文献   

7.
We analyze multiwavelength observations of an M2.9/1N flare that occurred in AR NOAA 11112 on 16 October 2010. AIA 211 Å EUV images reveal the presence of a faster coronal wave (decelerating from ≈?1390 to ≈?830 km?s?1) propagating ahead of a slower wave (decelerating from ≈?416 to ≈?166 km?s?1) towards the western limb. The dynamic radio spectrum from Sagamore Hill radio telescope shows the presence of a metric type II radio burst, which reveals the presence of a coronal shock wave (speed ≈?800 km?s?1). The speed of the faster coronal wave, derived from AIA 211 Å images, is found to be comparable to the coronal shock speed. AIA 171 Å high-cadence observations showed that a coronal loop, which was located at a distance of ≈?0.32R to the west of the flaring region, started to oscillate by the end of the impulsive phase of the flare. The results indicate that the faster coronal wave may be the first driver of the transversal oscillations of coronal loop. As the slower wave passed through the coronal loop, the oscillations became even stronger. There was a plasmoid eruption observed in EUV and a white-light CME was recorded, having velocity of ≈?340?–?350 km?s?1. STEREO 195 Å images show an EIT wave, propagating in the same direction as the lower-speed coronal wave observed in AIA, but decelerating from ≈?320 to ≈?254 km?s?1. These observations reveal the co-existence of both waves (i.e. coronal Moreton and EIT waves), and the type II radio burst seems to be associated with the coronal Moreton wave.  相似文献   

8.
The Sun Watcher using Active Pixel system detector and Image Processing (SWAP) onboard the PRoject for OnBoard Autonomy-2 (PROBA2) spacecraft provides images of the solar corona in EUV channel centered at 174 Å. These data, together with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 Å and AIA 171 Å channels. We observe that bright points are seen in EUV channels corresponding to a magnetic flux of the order of 1018 Mx. We find that there exists a good correlation between total emission from the bright point in several UV–EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings, and we have attempted to find the oscillation periods in bright points and their connection to magnetic-flux changes. The observed periods are generally long (10?–?25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection.  相似文献   

9.
We study the effect of projection and line-of-sight integration on the interpretation of the morphology and kinematics of EUV waves. We have performed a three-dimensional magnetohydrodynamic simulation of a coronal mass ejection (CME) erupting in an environment that mimics the low solar corona and calculated the resulting emission measure of the event from five different viewing angles. Our study provides more quantitative information about the impact of the viewing angle and projection effect on the properties of EUV waves than previous studies on the subject. Analyzing the emission measure of the lower corona reveals wave-like increases that move away from the eruption site, which we interpret as EUV waves. Behind the EUV wave front we can recognize coronal dimming regions. A comparison of the emission measure and calculated density supports the view that EUV waves are true waves. Our results show that the origin of the observed EUV wave is height-dependent, which means that the measured speed and the morphology depend on the viewing direction. Consequently, care should be taken when EUV observations are used to infer the true propagation speeds of EUV wave fronts.  相似文献   

10.
A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale extreme ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun??s surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving the question of their nature. With this review, we gather the current state-of-the-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion on several remaining open questions in the field of EUV waves research.  相似文献   

11.
The search for signatures of wave and oscillatory processes in the solar corona in the data obtained with imaging instruments can be automated by using the periodmap method. The method reduces a three-dimensional data cube to a two-dimensional map of the analysed field of view. The map reveals the presence and distribution of the most pronounced frequencies in the power spectrum of the time signal recorded at spatial pixels. We demonstrate the applicability of this method as a pre-analysis tool with the use of TRACE EUV coronal data, which contain examples of transverse and longitudinal oscillations of coronal loops. The main advantage of using periodmaps over other possible (more sophisticated) pre-analysis tools, such as wavelet analysis, is their robustness and efficiency (both in speed and computational power). The method can be implemented in the Hinode/XRT and SDO/AIA data pre-analysis.  相似文献   

12.
Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.  相似文献   

13.
In an effort to understand the three-dimensional structure of the solar corona and inner heliosphere during the Whole Heliosphere Interval (WHI), we have developed a global magnetohydrodynamics (MHD) solution for Carrington rotation (CR) 2068. Our model, which includes energy-transport processes, such as coronal heating, conduction of heat parallel to the magnetic field, radiative losses, and the effects of Alfvén waves, is capable of producing significantly better estimates of the plasma temperature and density in the corona than have been possible in the past. With such a model, we can compute emission in extreme ultraviolet (EUV) and X-ray wavelengths, as well as scattering in polarized white light. Additionally, from our heliospheric solutions, we can deduce magnetic-field and plasma parameters along specific spacecraft trajectories. In this paper, we present a general analysis of the large-scale structure of the solar corona and inner heliosphere during WHI, focusing, in particular, on i) helmet-streamer structure; ii) the location of the heliospheric current sheet; and iii) the geometry of corotating interaction regions. We also compare model results with i) EUV observations from the EIT instrument onboard SOHO; and iiin-situ measurements made by the STEREO-A and B spacecraft. Finally, we contrast the global structure of the corona and inner heliosphere during WHI with its structure during the Whole Sun Month (WSM) interval. Overall, our model reproduces the essential features of the observations; however, many discrepancies are present. We discuss several likely causes for them and suggest how model predictions may be improved in the future.  相似文献   

14.
太阳图像中存在各种不同尺度、亮度和结构的物理活动现象,由于太阳日冕高动态活动和传感器设备等因素的影响,太阳图像成像质量不佳。根据太阳动力学天文台(Solar Dynamic Observatory,SDO)的大气成像仪(Atmospheric Imaging Assenbly,AIA)拍摄不同波段数据结构的动态范围大、噪声大、结构相对模糊等特点,提出一种基于盲退卷积的图像增强方法。首先对图像进行去噪和降低动态范围的处理,基于图像功率谱的分布假设,从原图中估计点扩散函数(Point Spread Function,PSF)的功率谱;然后使用相位提取算法恢复点扩散函数的相位,再退卷积得出较高质量的目标图像;最后通过轮廓切片分析、功率谱分析以及点扩散函数分析对增强结果进行定量和定性评价。实验结果表明,相比现有的图像增强方法,该方法在有效增强太阳日冕图像细节结构的同时,能够复原原图中因模糊无法识别的结构。  相似文献   

15.
We present an assessment of the accuracy of the calibration measurements and atomic physics models that go into calculating the SDO/AIA response as a function of wavelength and temperature. The wavelength response is tested by convolving SDO/EVE and Hinode/EIS spectral data with the AIA effective area functions and by comparing the predictions with AIA observations. For most channels, the AIA intensities summed over the disk agree with the corresponding measurements derived from the current version (V2) of the EVE data to within the estimated 25 % calibration error. This agreement indicates that the AIA effective areas are generally stable in time. The AIA 304 Å channel, however, does show degradation by a factor of almost 3 from May 2010 through September 2011, when the throughput apparently reached a minimum. We also found some inconsistencies in the 335 Å passband, possibly due to higher-order contamination of the EVE data. The intensities in the AIA 193 Å channel agree to within the uncertainties with the corresponding measurements from EIS full CCD observations. Analysis of high-resolution X-ray spectra of the solar-like corona of Procyon and of EVE spectra allowed us to investigate the accuracy and completeness of the CHIANTI database in the AIA shorter wavelength passbands. We found that in the 94 Å channel, the spectral model significantly underestimates the plasma emission owing to a multitude of missing lines. We derived an empirical correction for the AIA temperature responses by performing differential emission measure (DEM) inversion on a broad set of EVE spectra and adjusting the AIA response functions so that the count rates predicted by the full-disk DEMs match the observations.  相似文献   

16.
We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈5.3 mHz, around four active regions, through spatial maps of their power estimated using data from the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The wavelength channels 1600 Å and 1700 Å from AIA are now known to capture clear oscillation signals due to helioseismic p-modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so-called “acoustic halos” seen around active regions, as a function of wave frequencies, inclination, and strength of magnetic field (derived from the vector-field observations by HMI), and observation height. We infer possible signatures of (magneto)acoustic wave refraction from the observation-height-dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p-mode absorption and mode conversions by the magnetic field.  相似文献   

17.
We have studied the rotation of the solar corona using the images taken at a 9.4?nm wavelength by the AIA 094 instrument on board the Solar Dynamics Observatory (SDO) satellite. Our analysis implies that the solar corona rotates differentially. It appears that ??, the angular rotation velocity of the solar corona, does not only depend on heliographic latitude but is also a function of time, while the nature of the latter dependence remains unclear. Besides measurement errors, deviations ???? from the mean rotational speed are also caused by proper motion of the observed point source (the tracer) with respect to its surroundings. The spread in ?? values at a particular heliographic latitude is a real effect, not caused by measurement errors. Most of the observations carry relative error less than 1?% in???.  相似文献   

18.
The initiation phase of coronal mass ejections (CMEs) is a very important aspect of solar physics, as these phenomena ultimately drive space weather in the heliosphere. This phase is known to occur between the photosphere and low corona, where many models introduce an instability and/or magnetic reconnection that triggers a CME, often with associated flaring activity. To this end, it is important to obtain a variety of observations of the low corona to build as clear a picture as possible of the dynamics that occur therein. Here, we combine the EUV imagery of the Sun Watcher using Active Pixel System Detector and Image Processing (SWAP) instrument onboard the Project for Onboard Autonomy (PROBA2) with the white-light imagery of the ground-based Mark-IV K-coronameter (Mk4) at Mauna Loa Solar Observatory (MLSO) to bridge the observational gap that exists between the disk imagery of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) and the coronal imagery of the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Methods of multiscale image analysis were applied to the observations to better reveal the coronal signal while suppressing noise and other features. This allowed an investigation into the initiation phase of a CME that was driven by a rising flux-rope structure from a “two-stage” flaring event underlying an extended helmet streamer. It was found that the initial outward motion of the erupting loop system in the EUV observations coincided with the first X-ray flare peak and led to a plasma pile-up of the white-light CME core material. The characterized CME core then underwent a strong jerk in its motion, as the early acceleration increased abruptly, simultaneously with the second X-ray flare peak. The overall system expanded into the helmet streamer to become the larger CME structure observed in the LASCO coronagraph images, which later became concave-outward in shape. Theoretical models for the event are discussed in light of these unique observations, and it is concluded that the formation of either a kink-unstable or torus-unstable flux rope may be the likeliest scenario.  相似文献   

19.
Solar five-minute oscillations have been detected in the power spectra of two six-day time intervals from soft X-ray measurements of the Sun observed as a star using the Extreme Ultraviolet Spectrophotometer (ESP) onboard the Solar Dynamics Observatory (SDO)/Extreme Ultraviolet Variability Experiment (EVE). The frequencies of the largest amplitude peaks were found to match the known low-degree (?=0?–?3) modes of global acoustic oscillations within 3.7 μHz and can be explained by a leakage of the global modes into the corona. Due to the strong variability of the solar atmosphere between the photosphere and the corona, the frequencies and amplitudes of the coronal oscillations are likely to vary with time. We investigated the variations in the power spectra for individual days and their association with changes of solar activity, e.g. with the mean level of the EUV irradiance, and its short-term variations caused by evolving active regions. Our analysis of samples of one-day oscillation power spectra for a 49-day period of low and intermediate solar activity showed little correlation with the mean EUV irradiance and the short-term variability of the irradiance. We suggest that some other changes in the solar atmosphere, e.g., magnetic fields and/or inter-network configuration may affect the mode leakage to the corona.  相似文献   

20.
The Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) is an array of four normal-incidence reflecting telescopes that image the Sun in ten EUV and UV wavelength channels. We present the initial photometric calibration of AIA, based on preflight measurements of the response of the telescope components. The estimated accuracy is of order 25%, which is consistent with the results of comparisons with full-disk irradiance measurements and spectral models. We also describe the characterization of the instrument performance, including image resolution, alignment, camera-system gain, flat-fielding, and data compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号