首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single garnet clinopyroxenite xenolith found at the Dish Hill basanite cone near Ludlow, California, has well developed unmixing and reaction textures like those found in garnet pyroxenite inclusions in Hawaiian, African and Australian basalts and like those of pyroxenites in some European alpine peridotites. Reconstructed pyroxene compositions suggest that before unmixing the rock consisted of clinopyroxene and about 10% garnet plus spinel, but all of the garnet may have been dissolved in clinopyroxene. Most or all of the garnet formed by exsolution from clinopyroxene and by reaction between clinopyroxene and spinel in an open system. Following exsolution, the rock was deformed and partly recrystallized in the solid state. Similarity of compositions of exsolved and recrystallized minerals suggests recrystallization at P-T conditions similar to those of exsolution.The rock is not the chemical equivalent of the host basanite and cannot represent magma of basanitic composition crystallized in the mantle. Its history of deformation and recrystallization, like that of accompanying spinel lherzolite inclusions, supports the idea that the garnet clinopyroxenite is an accidental inclusion derived from the upper mantle.  相似文献   

2.
Phenocrystic chrome spinel crystallized in normal MORB‐type greenstones in the East Takayama area. Associated phenocryst minerals show a crystallization sequence that was olivine first, followed by plagioclase, and finally clinopyroxene. Chrome spinel ranges from 0.54 to 0.77 in Mg/(Mg+Fe2+) and 0.21 to 0.53 in Cr/(Cr+Al); the Fe3+ content varies from 0.07 to 0.22 p.f.u. (O = 4). Significant compositional differences of spinel were observed among the phenocryst mineral assemblages. Chrome spinel in the olivine–spinel assemblage shows a wide range in Cr/(Cr+Al), and is depleted in Fe2+ and Fe3+. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage is Fe2+‐ and Fe3+‐rich at relatively high Cr/(Cr+Al) ratios. Basalt with the olivine–plagioclase–spinel assemblage contains both aluminous spinel and Fe2+‐ and Fe3+‐rich spinel. The assumed olivine–spinel equilibrium suggests that chrome spinel in the olivine–spinel assemblage changed in composition from Cr‐ and Fe2+‐rich to Al‐ and Mg‐rich with the progress of fractional crystallization. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage, on the other hand, exhibits the reversed variations in Mg/(Mg+Fe2+) and in Cr/(Cr+Al) ratios that decrease and increase with the fractional crystallization, respectively. The entire crystallization course of chrome spinel, projected onto the Mg/(Mg+Fe2+)–Cr/(Cr+Al) diagram, exhibits a U‐turn, and appears to be set on a double‐lane route. The U‐turn point lies in the compositional field of chrome spinel in the olivine–plagioclase–spinel assemblage, and may be explained by plagioclase fractionation that began during the formation of the olivine–plagioclase–spinel assemblage.  相似文献   

3.
Many isolated grains of a reddish pleonaste-type spinel occur in fines and metabreccia samples, particularly 14 319. Electron microprobe analyses (104) of spinels and their associated phases include 58 of pleonaste which show Mg/(Mg + Fe) 0.44–0.62 and Cr/(Cr + Al) 0.017–0.134 (atomic), plus minor amounts of other ions, and differ greatly from almost all previously recorded lunar spinels; almost no spinels of intermediate composition were found. Two types of compositional zoning exist: a diffuse primary one with cores lower in Ti, and a narrow secondary one from reaction with matrix yielding rims higher in Cr, Ti, and Mn. At contacts with breccia matrix there is a narrow corona of almost pure plagioclase (An80-An94), free of opaque minerals and pyroxene. Two types of solid inclusions found in the pleonaste are calcic plagioclase, and tiny spherical masses of nickel-rich sulfide.  相似文献   

4.
Luna 16 sample B-1 was the largest fragment (62 mg) obtained in the sample exchange with the USSR. Petrologic, mineralogic, and chemical investigations have been made on this fragment in conjunction with Rb-Sr and40Ar/39Ar investigations by our colleagues. Sample B-1 is a fine-grained ophitic basalt but is distinguished from the Apollo samples by containing a single pyroxene, predominantly pigeonitic, an ilmenite content (7%) intermediate to that of the Apollo 11 and 12 samples, and subequal amounts of pyroxene (50%) and plagioclase (40%). Chemically it is distinguished by a high Sr content (437 ppm) and a high K/U value (4700). The K-content (1396 ppm) is higher than that of Luna 16 soil sample A-2.  相似文献   

5.
Dredged rocks from an area of about 15 km2 within the inner floor and on the adjacent walls of the Rift Valley were collected. Based on petrographic and chemical data, four types of basaltic rocks were recognized: (1) picritic basalts with olivine xenocrysts, TiO2 < 0.6%, K2O < 0.1%, (2) olivine basalts with olivine megacrysts, TiO2 = 0.8–1.5%,K2O = 0.1–0.2%, (3) highly phyric and moderately phyric plagioclase basalts with megacrystic plagioclase, TiO2 < 1.3%, K2O < 0.3%, and (4) pyroxene basalts with pyroxene > plagioclase, TiO2 = 0.8–1%,K2O = 0.2–0.4%. The Cr and Ni having high partition coefficients show different variation trends for each type of rock and their values decrease continuously as crystallization proceeds within each type of basalt. It is speculated that two different magmas have given rise to the above-mentioned rocks. One has yielded the picritic basalts and subsequently the olivine basalts after a separation of the olivine cumulates; the other gave rise to the plagioclase basalts.  相似文献   

6.
The Angra dos Reis meteorite fell in 1869 and is a unique achondrite. It is an ultramafic igneous rock, pyroxenite, with 93% fassaite pyroxene which has 15.7% Ca-Tschermak's molecule, plus calcic olivine (Fo53.1; 1.3% CaO), green hercynitic spinel, whitlockite (merrillite), metallic Ni-Fe, troilite, as well as magnesian kirschsteinite (Ks62.3Mo37.7), within olivine grains, and celsian (Cs90.2An7.7Ab1.7Or0.4) which are phases reported in a meteorite for the first time, and plagioclase (An86.0), baddeleyite, titanian magnetite (TiO2, 21.9%), and terrestrial hydrous iron oxide which are phases reported for the first time in this meteorite. Petrofabric analysis shows that fassaite has a preferred orientation and lineation which is interpreted as being due to cumulus processes, possibly the effect of post-depositional magmatic current flow or laminar flow of a crystalline mush. The mineral chemistry indicates crystallization from a highly silica-undersaturated melt at low pressure. Since the meteorite formed as a cumulate, pyroxene crystals may have gravitationally settled from a melt which crystallized melilite first. Plagioclase would be unstable in such a highly undersaturated melt, and feldspathoids would be rare or absent due to the very low alkali contents of the melt. The presence of rare grains of plagioclase and celsian may be the result of late-stage crystallization of residual liquids in local segregations. Thus, the Eu anomaly in Angra dos Reis may be the result of pyroxene separation from a melt which crystallized melilite earlier, rather than plagioclase as previously suggested.  相似文献   

7.
The Oligocene alkaline basalts of Toveireh area (southwest of Jandaq, Central Iran) exhibit northwest–southeast to west–east exposure in northwest of the central‐east Iranian microcontinent (CEIM). These basalts are composed of olivine (Fo70–90), clinopyroxene (diopside, augite), plagioclase (labradorite), spinel, and titanomagnetite as primary minerals and serpentine and zeolite as secondary ones. They are enriched in alkalis, TiO2 and light rare earth elements (La/Yb = 9.64–12.68) and are characterized by enrichment in large ion lithophile elements (Cs, Rb, Ba) and high field strength elements (Nb, Ta). The geochemical features of the rocks suggest that the Toveireh alkaline basalts are derived from a moderate degree partial melting (10–20%) of a previously enriched garnet lherzolite of asthenospheric mantle. Subduction of the CEIM confining oceanic crust from the Triassic to Eocene is the reason of mantle enrichment. The studied basalts contain mafic‐ultramafic and aluminous granulitic xenoliths. The rock‐forming minerals of the mafic‐ultramafic xenoliths are Cr‐free/poor spinel, olivine, Al‐rich pyroxene, and feldspar. The aluminous granulitic xenoliths consist of an assemblage of hercynitic spinel + plagioclase (andesine–labradorite) ± corundum ± sillimanite. They show interstitial texture, which is consistent with granulite facies. They are enriched in high field strength elements (Ti, Nb and Ta), light rare earth elements (La/Yb = 37–193) and exhibit a positive Eu anomaly. These granulitic xenoliths may be Al‐saturated but Si‐undersaturated feldspar bearing restitic materials of the lower crust. The Oligocene Toveireh basaltic magma passed and entrained these xenoliths from the lower crust to the surface.  相似文献   

8.
Island arc and continental margin (i.e. western Americas) lavas are divided (based on raw data from literature) into basalts (defined by absence of Ca-poor pyroxene, dominated by quartz-normative tholeiites); basaltic andesites and andesites (subdivided on basis of breaks in SiO2 histogram and taken as <56% and 56–63% SiO2; Ca-poor pyroxene present; amphibole and biotite absent); and hornblende (±biotite) lavas, which prove to be mainly relatively silicic andesites. Relative proportions of these types are (576 samples): 23% basalts, 29% basaltic andesites; 30% andesites; 18% hornblende andesites. The compilation emphasizes the dominance of calcic plagioclase (labradorite-anorthite) amongst the phenocryst phases. Pyroxenes are largely augite and hypersthene (En60–75); olivine (Fo65–85) is common through all compositions. There is an overall close similarity in chemistry and mineralogy between continental margin and island arc lavas, although small consistent differences are apparent (e.g. K2O, TiO2, P2O5).Modal data indicate that 70% of lavas are phenocryst-rich (20–60 vol.%), and that phenocryst contents show a bimodal distribution. Statistically and petrologically significant correlations are found between mineralogy and rock chemistry, most notably between total rock Al2O3 and modal phenocrystic plagioclase (found in all data groups, except hornblende andesites). This, and related data and correlations, indicate that the majority of orogenic magmas are modified by crystal fractionation (including crystal accumulation) processes dominated by plagioclase, and interpreted to occur under relatively low pressures. Dominance of plagioclase suggests phenocryst precipitation occurs typically in water-undersaturated magmas.  相似文献   

9.
Toshio  Nozaka 《Island Arc》1997,6(4):404-420
Abstract Basic and ultrabasic xenoliths included in Cenozoic alkali basalts from the Kibi and Sera plateaus, Southwest Japan, can be classified into five groups on the basis of mineral association and texture. Their equilibration P-T conditions estimated from paragenesis and mineral chemistry indicate that the dominant rock type from the lower crust to upper mantle changes with increasing depth as follows: (i) pyroxene granulite (Group V) and meta-sediments; (ii) garnet gabbro (Group 111) and corundum anorthosite (Group IV); (iii) spinel pyroxenite (Group 11); and (iv) spinel peridotite and pyroxenite (Group I). Groups I1 and I11 show a lower degree of recrystallization than Groups I and V, and have similarities in composition and mineral chemistry to host basalts. Based on these facts along with the P-T conditions of equilibration, Groups I1 and I11 are interpreted as formed from basaltic magma that intruded beneath the crust-mantle boundary at an early stage of the magmatism of the alkali basalts, where the lower crust and uppermost mantle had consisted of Group V and metasediments, and Group I, respectively. It follows that the crust has grown downward due to underplating of basaltic magma beneath the bottom of pre-existing crust. Group IV has commonly the same mineral assemblage, corundum + calcic plagioclase + aluminous spinel, and shows locally, nearby kyanite crystals, almost the same texture as fine-grained aggregates in a quartzite xenolith. The aggregates appear to have been formed by reaction between kyanite and host basalt, and accordingly Group IV is interpreted as formed by reaction between metasediments and basaltic magma at the time of the underplating. The Kibi, Sera and Tsuyama areas are distinguished from the areas nearby the Sea of Japan by the occurrence of the garnet gabbro and corundum anorthosite xenoliths, by the absence of the association of olivine + plagioclase in basic and ultrabasic xenoliths, and by the lower temperature of equilibration of basic xenoliths. From these facts it is stressed that in general the crust becomes thinner and geothermal gradient becomes higher towards the back-arc side. Such a regional variation in crustal structure must reflect the tectonic situation of Southwest Japan at the time of the magmatism of the alkali basalts, namely rifting and shallow-level magmatism at the back-arc side.  相似文献   

10.
Apollo 15 sample 15597, from the rim of Hadley Rille, is a pyroxene vitrophyre consisting primarily of acicular pyroxene phenocrysts and glass matrix. The pyroxene centers are a Ca-poor and Mg-rich pigeonite of Wo4En70Fs26 which zones outward to Wo15En52Fs33. The latter is in contact with an epitaxial augite overgrowth of Wo30En40Fs30 which itself zones to a Mg-poor but still Ca-rich ferroaugite of Wo32En10Fs58. Toward the rims, Al2O3 and TiO2 contents increase to a maximum of 13.8 and 3.5 wt% respectively. These zoning trends are attributed to pyroxene crystallization in the absence of co-crystallization of plagioclase or a Ti-rich phase. Grains of chromite and native nickeliron are disseminated throughout the rock. The chromites have the highest Cr2O3 and V2O3 contents (~ 55and1.8wt%) of any reported lunar spinel, and appear to have formed for the most part before pyroxene crystallization began.Textural evidence, including the vitrophyric nature of the sample itself, the unusual compositions of the pigeonite centers (high Mg and low Ca) and chromites (high Cr), and the extreme chemical zonation of the pyroxenes all give strong evidence that this rock arrived at the lunar surface in an essentially entirely liquid state, and that eruption was followed by metastable pigeonite nucleation, rapid metastable growth and continued metastable pyroxene nucleation, and final solidification. It thus may represent one of the best examples of a mare basalt completely unaffected by local differentiation.  相似文献   

11.
Pristine granite clasts in Apollo-14 breccias 14321 and 14303 have estimated masses of 1.8 and 0.17 g, respectively. The 14321 clast is ~ 60% K-feldspar and 40% quartz, with traces of extremely Mg-poor mafic silicates and ilmenite. The 14303 clast is roughly 33% plagioclase, 32% K-feldspar, 23% quartz, 11% pyroxene, and 1% ilmenite; pyroxene and ilmenite are moderately Mg-rich; plagioclase and pyroxene are strongly zoned. Both clasts are severely brecciated, but monomict (pristine). Both have abundant graphic intergrowths of K-feldspar with quartz. Unlike the majority of similar Earth rocks, both clasts are devoid of hydrous phases. The bulk composition of the 14321 clast is similar to those of several other lunar granitic samples, but the 14303 clast is unique: it bears as close a resemblance to KREEP as it does to other lunar granites. Silicate liquid immiscibility may explain why the granites are low in REE relative to KREEP.  相似文献   

12.
Phase-equilibrium studies of the nepheline normative portion of the basalt tetrahedron nepheline-forsterite-silica-diopside ofYoder andTilley have shown that during the course of crystallization the composition of the liquid phase leaves this tetrahedron. When the tetrahedron is expanded to nepheline-forsterite-silica-Ca2SiO4 the courses of crystallization and composition of the liquid can be and have been followed by studying a series of joins within this expanded tetrahedron. These studies show that the ultimate goal of crystallization is the quaternary invariant point diopsidic pyroxene + nepheline solid solution + sodic plagioclase + wollastonite solid solution + liquid at 950 ± 5°"C. Attention is called to this low melting point in a dry system. With perfect equilibrium between the solid phases and liquid all melilite disappears by reaction with liquid below 1065 ± 5°C, the temperature of the quaternary reaction point with diopsidic pyroxene + melilite + nepheline solid solution + wollastonite solid solution + liquid. A flow sheet showing the reactions between all quaternary invariant points in the geologically interesting portion of the expanded tetrahedron is presented. This shows the interrelations (daughter-parent relations) between a large number of rock types found in intrusive and extrusive nepheline normative compositions as well as in the quartz normative tholeiitic basalts.  相似文献   

13.
Malwa plateau is composed mainly of basalt traps. The basalt flows are of uniform character and the total thickness varies from 50 m to 135 m. A number of flows have been identified, indicating breaks in the continuity of the eruptions. The breaks were of shorter nature as evidenced by the presence of thin discontinuous bands of intertrappean sediments. The trap maintains a uniform horizontal attitude with well developed joints and is sometimes scoriaceous. Petrographically, these basalts are divisible into porphyritic, massive and vesicular types. The rock types are composed essentially of plagioclase, pyroxene, iron ore and glass. Stray occurrences of olivine have been noted from the lower section of the flows. The plagioclase ranges in composition between An 59 and An 68 and the pyroxene is diopsidic augite. The rocks are fine grained, aphanitic showing porphyritic, glomeroporphyritic, intergranular, micro-ophitic and flow textures. It is concluded that the lava flowed out quietly, in some cases through fissures, and that the area is away from the main centres of differentiation.  相似文献   

14.
The nature, origin, and tectonic significance of shoshonitic volcanism is currently the subject of widely differing views. In the type locality in the Absaroka Range, the rocks consist of a diverse group of lavas, all of Mid-Eocene age. High in the volcanic pile are subordinate volumes of absarokite and shoshonite flows, both of which contain calcic plagioclase and sanidine coexisting in the groundmass. Shoshonites contain plagioclase, olivine, and pyroxene phenocrysts; absarokites contain only olivine and pyroxene phenocrysts. A few absarokites contain modal leucite. A chemical study was made of six shoshonites and three absarokites from this area.Although resorption and zoning indicate disequilibrium in both types of rocks, there is no geochemical evidence of magmatic contamination. Calculated crystal/liquid distribution coefficients are in close agreement with previously determined values for basalts. Decrease in pressure during ascent is a likely cause for the observed disequilibrium.Mass balance calculations show that it would be possible to form a shoshonite by fractionation of olivine and pyroxene from an absarokitic magma. Trace element abundances are consistent with this relationship. Petrographic evidence suggests, however, that fractionation of plagioclase played a role in the formation of shoshonites.A high-pressure origin is consistent with rare earth compositions, and a high magmatic temperature is indicated by the composition of the plagioclase. A calculation of ln aKliquid2O for a reaction involving eclogite and a reaction involving a tested rock (Marsh and Carmichael, 1974) suggests a high-pressure origin for a latitude underlying the shoshonites and absarokites. This calculation is subject to large variances because of its sensitivity to estimated equilibrium temperatures.Comparison with lavas of similar composition indicates that shoshonites and absarokites of the Absaroka Range are influenced by their continental setting. There is little evidence for the generation of these magmas in a subduction environment.  相似文献   

15.
Ibitira meteorite is interpreted as a strongly metamorphosed, unbrecciated, vesicular eucrite with a primary variolitic and secondary hornfelsic texture dominated by 60% pyroxene (bulk composition En37Fs48Wo15 exsolved into lamellae several micrometers wide of augite En32Fs27Wo41 and pigeonite En40Fs56Wo4) and 30% plagioclase An94 (mosaic extinction and variable structural state). Minor phases are 5% tridymite plates one-quarter occupied by plagioclase (An94) inclusions; several percent intergrowths of ilmenite and Ti-chromite with trace kamacite Fe99Co0.5Ni0.2 and narrow olivine (Fa83) rims; one grain of low-Ti-chromite enclosed in tridymite; trace troilite with kamacite Fe98Co1.0Ni0.9. Euhedral ilmenite, Ti-chromite, plagioclase and merrillite in vesicles indicate vapor deposition. These properties can be explained by a series of processes including at least the following: (1) igneous crystallization under pressure low enough to allow vesiculation, (2) prolonged metamorphism, perhaps associated with vapor deposition and reduction, to produce the coarse exsolution of the pyroxene and the coarse ilmenite-chromite intergrowths, (3) strong shock which affected the plagioclase and tridymite but not the pyroxene, (4) sufficient annealing to allow recrystallization of the plagioclase and tridymite, and partial conversion to the low structural state of the former.  相似文献   

16.
This study is focused on a plagioclase‐bearing spinel lherzolite from Chah Loqeh area in the Neo‐Tethyan Ashin ophiolite. It is exposed along the west of left‐lateral strike‐slip Dorouneh Fault in the northwest of Central‐East Iranian Microcontinent. Mineral chemistry (Mg#olivine < ~ 90, Cr#clinopyroxene < ~ 0.2, Cr#spinel < ~ 0.5, Al2O3orthopyroxene > ~ 2.5 wt%, Al2O3clinopyroxene > ~ 4.5 wt%, Al2O3spinel > ~ 41.5 wt%, Na2Oclinopyroxene > ~ 0.11 wt%, and TiO2clinopyroxene > ~ 0.04 wt%) confirms Ashin lherzolite was originally a mid‐oceanic ridge peridotite with low degrees of partial melting at spinel‐peridotite facies in a lithospheric mantle level. However, some Ashin lherzolites record mantle upwelling and tectonic exhumation at plagioclase‐peridotite facies during oceanic extension and diapiric motion of mantle along Nain‐Baft suture zone. This mantle upwelling is evidenced by some modifications in the modal composition (i.e. subsolidus recrystallization of plagioclase and olivine between pyroxene and spinel) and mineral chemistry (e.g. increase in TiO2 and Na2O of clinopyroxene, and TiO2 and Cr# of spinel and decrease in Mg# of olivine), as a consequence of decompression during a progressive upwelling of mantle. Previous geochronological and geochemical data and increasing the depth of subsolidus plagioclase formation at plagioclase‐peridotite facies from Nain ophiolite (~ 16 km) to Ashin ophiolite (~ 35 km) suggest a south to north closure for the Nain‐Baft oceanic crust in the northwest of Central‐East Iranian Microcontinent.  相似文献   

17.
Eiji Sasao 《Island Arc》2013,22(2):170-184
A petrographic study of sandstones from the Miocene Mizunami Group in Central Japan has been performed on core samples from a single borehole, in order to evaluate the provenance of the sedimentary rock. Evaluation of the provenance is based on bulk mineral, heavy mineral and plagioclase contents and on whole rock chemical compositions. The sandstones studied are divisible into three types; the first type is characterized by the occurrence of biotite and plagioclase ranging from albite to oligoclase, the second type is characterized by the dominance of amphibole and labradorite with pyroxene (clinopyroxene > orthopyroxene), and the third type is characterized by the dominance of pyroxene (orthopyroxene > clinopyroxene) and andesine with lesser labradorite, bytownite and anorthite. The first type is interpreted to be derived from the basement granite, whereas the others were derived mostly from volcanic ash, judging from their mineral compositions. The volcanic activity that supplied the volcanic ash to the Mizunami Basin occurred in two phases, distinguishable by variations in their mineralogical and geochemical compositions, an indication of change in character of the volcanic activity. This petrographic study of the sandstones in the Mizunami Group suggests that unrecognized volcanic activity occurred around the Mizunami Basin, even though potential provenance of the volcanic ash has not yet been identified.  相似文献   

18.
Abstract Field, geochemical and geophysical evidence show that the southern Zambales Ophiolite Complex attained its present-day configuration through the juxtapositioning of an arc terrane (San Antonio massif) to a back-arc crust (Cabangan massif). The San Antonio massif manifests island arc-related characteristics (i.e. spinel XCr [Cr/(Cr + Al)] >0.60; mostly plagioclase An92–95; pyroxene crystallizing ahead of plagioclase; orthopyroxene as an early, major crystallizing phase) which cannot be directly parental to the Cabangan massif transitional mid-ocean ridge basalt to island arc tholeiitic volcanic carapace. The two massifs are believed to be separated by a left-lateral strike–slip fault, the Subic Bay Fault Zone. Apart from the presence of highly sheared, allochthonous outcrops, the Subic Bay Fault Zone is generally defined by northwest–southeast trending magnetic and bouguer anomalies. The San Antonio massif was translated southward from the northern part of the Zambales Ophiolite Complex through the Subic Bay Fault Zone. This resulted into its suturing with the Cabangan massif and could have led to the formation of the present-day Subic Bay.  相似文献   

19.
Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ±sanidine ± quartz + augite + pigeonite ± hypersthene ± fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000°C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50°C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100°C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ±60°C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed by partial fusion of relatively dry (e.g. granulitic) crustal lithologies.  相似文献   

20.
KREEP-rich poikilitic impact melt rocks 65777,11, 65015,88, and 62235,66 are the only mafic impact melt rocks from Cayley Plains stations, Apollo 16, from which areas of subophitic texture can be reported.The bulk chemistry of these unique subophitic areas and the surrounding poikilitic matrices, as well as mineral compositions (olivine, plagioclase, pyroxene, Fe-Ni metal) were determined by electron microprobe analysis. All subophitic areas could be undoubtedly identified as impact melt rockclasts. Inclusion 65777,11 II is of uniquely KREEP-rich composition, 62235,66 II can be classified as anorthositic. Therefore our attempt to identify pristine volcanic basement rocks of the Cayley regions among these inclusions of basaltic texture failed.However, the absence of pristine volcanic target rock fragments and the existence of KREEP-rich and anorthositic impact melt clasts in KREEP-rich impact melt rocks from Cayley Plains favors the theory that the Cayley Plains formation is part of the ejecta blanket from a large basin-type impact crater (Imbrium?), which is underlain by anorthositic material (Nectaris ejecta?), and has been reworked by local impacts in post-Imbrian times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号