首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 58 毫秒
1.
正压流体中,从准地转位涡方程出发采用摄动方法和时空伸长变换推导了在缓变地形下β效应的Rossby代数孤立波方程,得到Rossby波振幅满足带有缓变地形非齐次Benjamin-Davis-Ono(BDO)方程的结论.通过分析孤立Rossby波振幅的演变,指出了β效应、地形效应是诱导Rossby孤立波产生的重要因素,说明了在缓变地形强迫效应和非线性作用相平衡的假定下,Rossby孤立波振幅的演变满足非齐次BDO方程,给出在切变基本气流下缓变地形和正压流体中Rossby波的相互作用.  相似文献   

2.
正压大气模式下,采用摄动方法和时空伸长变换推导了具有β效应、地形效应和耗散的mKdV-Burgers方程,得到Rossby孤立波振幅的演变满足带有β效应,地形与耗散的mKdV-Burgersm方程的结论.说明β效应、地形效应是诱导Rossby孤立波的重要因素.  相似文献   

3.
从N层位涡方程出发,无量纲化位涡方程,得到各位面上的位涡方程,在N位面上的涡度方程中考虑地形效应对Rossby孤立波的影响,用约化摄动法和时空伸长变换推导出地形效应作用下的Korteweg-de Vries(KdV)方程,说明地形对斜压Rossby孤立波的产生有重要的影响.  相似文献   

4.
在正压大气模式下,采用多重尺度法研究了基本气流具有弱切变的正压非线性Rossby孤立波包,得到了当波振幅和纬向波数都是缓变情况下Rossby波包振幅的演变满足带有β效应和小尺度地形作用的非线性非齐次Schrdinger方程.说明β效应和地形效应是诱导Rossby包络孤立波的重要因素.  相似文献   

5.
本文在正压流体中,从包含完整Coriolis参数的准地转位涡方程出发,在弱非线性长波近似下,采用多时空尺度和摄动方法,推导出大气非线性Rossby波振幅演变满足带有地形强迫的非线性Zakharov-Kuznetsov(ZK)-Burgers方程.结果分析表明:地球旋转的水平分量、β效应、地形效应和耗散都是诱导二维Rossby波产生的重要因子.  相似文献   

6.
在正压流体中,从准地转正压涡度方程出发,运用时空伸长变换和摄动法推导了在完整Coriolis力作用下的非线性Rossby孤立波包振幅的演变满足非齐次非线性Schrodinger方程的结论.结果分析表明,完整Coriolis力中的水平分量对Rossby孤立波产生一定的影响,同时,β效应和地形效应也是诱导Rossby孤立波产生的重要因素.  相似文献   

7.
本文首次从带有地形的赤道大气基本方程组出发,利用浅水模式近似、半地转近似、Gardner-Morikawa变换以及摂动展开法得到了具有地形效应的赤道非线性波动振幅所满足的Korteweg-de Vries方程,并且利用Jacobi椭圆函数展开法求得非线性方程对应的周期波解和孤立波解,指出地形是产生赤道Rossby孤立波的重要因素.  相似文献   

8.
热带海洋和大气中地形Rossby波和Rossby波的耦合不稳定   总被引:3,自引:0,他引:3  
当大尺度背景场存在赤道急流时, 由相应不均匀的温跃层(海洋)和高度场(大气)激发出的地形Rossby波和由β效应激发出的Rossby波, 在一定条件下, 通过相互作用后可产生一类新的不稳定, 称为地形Rossby波和Rossby波的耦合不稳定. 讨论了这类波系在ENSO发展中可能起的作用.  相似文献   

9.
在正压流体中从包含地形的准地转位涡出发,利用行波变换和约化摄动法导出了弱二次切变基本流下β变化和地形共同作用的正压Rossby孤立波振幅满足非齐次KdV方程.并计算了非齐次KdV方程的系数,说明弱二次切变基本气流、β变化和地形对Rossby孤立波的作用.  相似文献   

10.
从包含完整Coriolis力的大气运动方程组出发,利用半地转近似导出了β效应、层结效应和地球旋转水平分量f_h共同作用下的非线性Rossby波满足KdV方程以及KdVmKdV方程.结果表明β效应、层结效应和地球旋转水平分量对Rossby的作用.  相似文献   

11.
切变基本纬向流中非线性赤道Rossby长波   总被引:5,自引:1,他引:4  
为了解决观测和理论研究中的一些问题以及更好地了解热带大气动力学 ,有必要进一步研究基本气流的变化对大气中赤道Rossby波动的影响 .本文研究分析基本气流对赤道Rossby长波的影响 ,利用一个简单赤道 β平面浅水模式和摄动法 ,研究纬向基本气流切变中非线性赤道Rossby波 ,推导出在切变基本纬向流中赤道Rossby长波振幅演变所满足的非线性KdV方程并得到其孤立波解 .分析表明 ,孤立波存在的必要条件是基本气流有切变 ,而且基流切变不能太强 ,否则将产生正压不稳定 .  相似文献   

12.
Interaction of high-frequency seismo-electromagnetic emissions with the weakly ionized gas of the ionospheric D-layer is considered. It is shown that through the earth's ionosphere weakly damped high-frequency electron cyclotron electromagnetic waves can propagate. These new type of waves easily reach the ionospheric D-layer where they interact with the existing electrons and ions. Acting on electrons ponderomotive force is taken into account and corresponding modified Charney equation is obtained. It is shown that only nonlinear vortical structures with negative vorticity (anticyclone) can be excited. The amplitude modulation of electromagnetic waves can lead to the excitation of Rossby waves in the weakly ionized gas. The corresponding growth rate is defined. Depending on the intensity of the pumping waves generated by seismic activity different stable and unstable branches of oscillations are found. Detection of the new oscillation branches and energetically reinforcing Rossby solitary vortical anticyclone structures may be serve as precursors to earthquake.  相似文献   

13.
Experiments were performed on the rotating platform 14 m in diameter equipped with a simple internal wave generator. Internal waves were generated for a wide range of Coriolis parameters. When the rotation is very weak, i.e., when the internal Rossby radius of deformation is much larger than the wavelength, then the stable nonlinear waves generated are solitary waves. These have a horizontal crest, as in the nonrotating case. When the rotation is strong, i.e., when the internal Rossby radius is at most comparable with the wavelength, then Sverdrup-like periodic waves can be generated, but no solitary wave can then propagate. For the intermediate case, Ostrovsky waves are generated. Their phase speed increases with increasing amplitude. Then, there are two characteristic wave lengths: one which varies with the inverse square root of the amplitude, as for the KdV wave, and the other, linked with the rotation, which varies as the square root of the amplitude. The experimental results are thus in agreement with most of the conclusions in recent analytical developments.  相似文献   

14.
The generation and further linear and nonlinear dynamics of planetary ultra-low-frequency (ULF) waves are investigated in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow). Planetary ULF magnetized Rossby type waves appear as a result of interaction of the medium with the spatially inhomogeneous geomagnetic field. An effective linear mechanism responsible for the intensification and mutual transformation of large scale magnetized Rossby type and small scale inertial waves is found. For shear flows, the operators of the linear problem are not self-conjugate, and therefore the eigenfunctions of the problem may not be orthogonal and can hardly be studied by the canonical modal approach. Hence, it becomes necessary to use the so-called nonmodal mathematical analysis. The nonmodal analysis shows that the transformation of wave disturbances in shear flows is due to the non-orthogonality of eigenfunctions of the problem in the conditions of linear dynamics. Using numerical modeling, the peculiar features of the interaction of waves with the background flow as well as the mutual transformation of wave disturbances are illustrated in the ionosphere. It has been shown that the shear flow driven wave perturbations effectively extract an energy of the shear flow increasing the own energy and amplitude. These perturbations undergo self-organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation’s front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices or vortex streets and vortex chains.  相似文献   

15.
提出了扩展雅可比椭圆函数方法,来求得Petviashvili方程的精确解析解.Petviashvili方程被视为正压准地转位涡度方程的非地转扩展,应用该方法可以得到很多二维非线性Rossby波的周期波解,在取极限情况下,也可以得到二维Rossby孤立子解.  相似文献   

16.
针对非线性的准地转正压位涡方程,利用自行设计的差分格式和高斯函数拟合得到的真实基流分布,数值研究了线性和非线性Rossby波流场结构和总能量的演变以及初值对总能量演变的影响.发现在非线性的真实基流中,线性和非线性Rossby波的相对总能量出现振荡型增长或衰减,非线性波动的振荡周期明显小于线性波动,非线性项不仅抑制能量的...  相似文献   

17.
Abstract

The mutual interaction of fields induced by spatially separated potential vorticity sources in a quasi-geostrophic barotropic flow is investigated using the weakly nonlinear approach. It is found that a powerful nonlinear response can be triggered by Rossby lee waves. This resonance phenomenon which dominates all other nonlinear corrections depends on certain global resonance conditions and on the change in the phase of the Rossby lee wave across the distance separating the sources. The response is particularly strong for topographic forcing possessing δ-function characterisitics.  相似文献   

18.
Large, long-lived vortices are abundant in the atmospheres of the giant planets. Some of them survive a few orders of magnitude longer than the dispersive linear Rossby wave packets, e.g. the Great Red Spot (GRS), Little Red Spot (LRS) and White Ovals (WO) of Jupiter, Big Bertha, Brown Spot and Anne's Spot of Saturn, the Great Dark Spot (GDS) of Neptune, etc. Nonlinear effects which prevent their dispersion spreading are the main subject of our consideration. Particular emphasis is placed on determining the dynamical processes which may explain the remarkable properties of observed vortices such as anticyclonic rotation in preference to cyclonic one and the uniqueness of the GRS, the largest coherent vortex, along the perimeter of Jupiter at corresponding latitude.We review recent experimental and theoretical studies of steadily translating solitary Rossby vortices (anticyclones) in a rotating shallow fluid. Two-dimensional monopolar solitary vortices trap fluid which is transported westward. These dualistic structures appear to be vortices, on the one hand, and solitary waves, on the other hand. Owing to the presence of the trapped fluid, such solitary structures collide inelastically and have a memory of the initial disturbance which is responsible for the formation of the structure. As a consequence, they have no definite relationship between the amplitude and characteristic size. Their vortical properties are connected with geostrophic advection of local vorticity. Their solitary properties (nonspreading and stationary translation) are due to a balance between Rossby wave dispersion and nonlinear effects which allow the anticyclones, with an elevation of a free surface, to propagate faster than the linear waves, without a resonance with linear waves, i.e. without wave radiation. On the other hand, cyclones, with a depression of a free surface, are dispersive and nonstationary features. This asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among the long-lived vortices in the atmospheres of the giant planets and also among the intrathermocline oceanic eddies.The effects of shear flows and differences between the properties of monopolar vortices in planetary flows and various laboratory experiments are discussed. General geostrophic (GG) theory of Rossby vortices is presented. It differs essentially from the traditional quasi-geostrophic (QG) and intermediate-geostrophic (IG) approximations by the account of (i) all scales between the deformation radius and the planetary scale and (ii) the arbitrary amplitudes of vortices. It is shown that, unlike QG- and IG-models, the GG-model allows for explaining the mentioned cyclonic-anticyclonic asymmetry not only in planetary flows, but also in laboratory modeling with vessels of near paraboloidal form.  相似文献   

19.
The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号