首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
<正>1956年,Bunt等[1]在南极莫森站附近海域首先观察到了海冰中的有色物质——冰藻,它主要是指生活在南极极端环境海冰中的一大类微型藻类(简称冰藻)。进入20世纪90年代,随着"南极海冰区生态学研究计划"和"南极海冰区近岸和陆架系统生  相似文献   

2.
UV-B增强对南极蓝藻形态和超微结构影响的研究   总被引:3,自引:1,他引:3  
采用两种微藻分离方法对本实验室在第18次南极考察采集的南极海冰和海水样品进行南极冰藻分离,得到包括1株南极蓝藻在内的8种南极冰藻。该蓝藻(南极蓝藻-B)的生长曲线表明,0—6d有一个明显的延滞期,第6天进入对数生长期,第20天达到生长稳定期。紫外辐射增强后,南极蓝藻的形态和超徽结构都发生了显著变化:细胞个体明显增大、细胞壁变厚、片层结构更加明显、多糖和脂肪颗粒数目增多。并发现了紫外辐射后的蓝藻向培养液中大量分泌物质的现象。这些现象表明,虽然南极地区紫外线辐射很强,但南极蓝藻可以产生多种抗紫外辐射的活性物质来适应这种极端环境。  相似文献   

3.
冰活性物质与南极冰藻低温适应性关系的初步研究   总被引:1,自引:0,他引:1  
冰活性物质是由南极冰藻产生的具有抑制冰晶生长的一类胞外糖蛋白.对5种南极冰藻分泌的冰活性物质的测定表明,冰活性物质活性存在种间特异性,大小依次为绿藻L4>盒形藻>菱形藻>圆筛藻>绿藻B7.以高活性的绿藻L4为研究对象,抑制冰晶活性测定表明,含有冰活性物质的溶液所形成的冰晶颗粒较小,颗粒之间缝隙较大,能够减轻结冰给生物体带来的伤害.  相似文献   

4.
南极冬季威德尔海海冰物理结构与叶绿素a垂直分布特征   总被引:2,自引:1,他引:1  
2006年8-10月极星号ANT/XXⅢ-7航次,对南极威德尔海西北海域浮冰区进行海冰综合考察,采用海冰物理学、海冰化学和海冰生态学等多学科现场同步观测取样与分析研究新方法。结果显示,测区21个冰站不同冰龄和不同结构类型的海冰冰芯,叶绿素a含量总平均值为16.56μg/dm3,范围为2.10~84.40μg/dm3,叶绿素a相对总量的R值均值为0.79~0.83。冰体叶绿素a含量与分布取决于海冰冰晶物理结构及其所处冰层部位,并和海冰生成环境、冰体发育和成冰过程密切相关。研究结果证实南极冬季海冰叶绿素a含量普遍处于较高水平,海冰冰藻具有较强活性,由此表明从整体上南极冬季海冰具有较高初级生产能力。这对正确分析估算冬季南极海洋生物生产,重新评估南大洋碳通量及其在全球气候变化中的贡献,具有重要科学意义。  相似文献   

5.
南极冰藻是南大洋碳流和能量流的重要组成部分,在该区域的生态系统中发挥着极其重要的作用.低温、低光照和高盐度对类囊体膜光系统的伤害必将影响冰藻对光能的吸收、传递和转换,从而影响冰藻的正常生长繁殖.事实上,冰藻为了能够在这寒冷骤变的环境中生存、繁衍,类囊体膜光系统在生理、代谢和遗传上进行了复杂的适应性改变,冰藻在低光照条件下保持很高的光合效率.因此研究南极冰藻类囊体膜光系统具有重要的理论意义.综述了南极冰藻类囊体膜光系统的研究进展,以期为进一步了解南极冰藻光系统作用机理提供依据.  相似文献   

6.
南极磷虾是南大洋生态系统的关键物种, 种群聚集在南大洋的大西洋扇区。海冰在南极磷虾生活史中起着重要作用, 海冰及其冰下环境为磷虾越冬提供了避难场所, 但海冰是否为磷虾越冬提供了重要的饵料存在一定的争议, 对此问题的解决需要量化源于海冰的冰藻对南极磷虾越冬期间饵料及碳源的贡献。基于2020年冬季(3~8月)于南大洋大西洋扇区48.1亚区(布兰斯菲尔德海峡周边区域)和48.3亚区(南乔治亚岛周边海域)采集的磷虾样品, 通过两种高支链类异戊二烯化合物(IPSO25和HBI III)分别作为源于海冰的冰藻和源于水体浮游植物的生物标志物, 对两个区域冬季磷虾对冰藻和浮游植物的依赖进行研究。结果显示, 处于较高纬度、海冰密集度较高的48.1亚区的南极磷虾体内含有更高的IPSO25, 而处于开阔水域48.3亚区的磷虾体内有更高比例的HBI III, 另外48.3亚区磷虾的δ13C和δ15N稳定同位素显著高于48.1亚区的磷虾。48.1亚区南极磷虾越冬期间对浮游植物和冰藻的依赖与体长相关, 其中体长相对较短的早期成体呈现更高的依赖性, 同时该区域磷虾对冰藻的摄食提高了其营养级地位。48.3区南极磷虾越冬期间两种类异戊二烯含量与δ15N稳定同位素数值呈负相关关系, 表明该区域南极磷虾在初级生产匮乏时会摄食动物性饵料。若未来南大洋大西洋扇区海冰持续减少, 这将对整个磷虾种群、磷虾渔业的可持续发展和区域生态系统的稳定性产生威胁。  相似文献   

7.
南极上空臭氧层的破坏导致了紫外辐射日益增强,高强度的UV-B辐射会造成细胞中DNA的损伤,影响蛋白质、脂类和色素的代谢过程。生长在南极的绿藻具有一系列防御机制以应对增强的UV-B辐射,其中类菌胞素氨基酸(Mycosporine-like amino acids, MAAs)是一类重要的紫外防御物质。为探究类菌胞素氨基酸对UV-B辐射的响应,本文以南极冰藻(Chlamydomonassp.ICE-L)、针丝藻(Raphidonema nivale Lagerheim, NIES-2290)和胶球藻(Coccomyxa subellipsoidea E.Acton, NIES-2166)三种生活在南极的绿藻为材料,采用UV-B辐射胁迫(强度0.35 W/m~2,短时处理3 h),并通过液相色谱-质谱联用法检测类菌胞素氨基酸的种类和含量的变化。Mycosporine-glycine为三种南极绿藻中共有的MAAs,在UV-B辐射胁迫下三种南极绿藻中Mycosporine-glycine含量变化不尽相同,表明不同的南极绿藻中MAAs对UV-B辐射的响应各有其特性。首次在绿藻(南极冰藻和胶球藻)中检测到Gadusol。Gadusol作为MAAs的合成前体,它的合成积累使得生活在海冰环境的南极冰藻和胶球藻具有良好的抗UV-B辐射能力。其中南极冰藻抗紫外能力最强,这可能得益于不同MAAs间的动态转化,含量升高的Palythine及Usujirene/Palythene可能对南极冰藻的紫外屏蔽起着至关重要的作用。  相似文献   

8.
海冰的广泛分布是南大洋最显著的自然环境特征,冬季海冰的覆盖面积高达20×10~6平方公里,夏季减少为4×10~6平方公里。南极海冰的存在和消长将对包括水柱中的初级产量直至以海冰作为栖息地的海鸟以及企鹅和海豹等哺乳动物的整个南极生态系统产生极其重大的影响。海冰本身也支持了一个高生产力、以冰藻(生长在冰中的藻类)为中心的生物群落,它将提供20%以上的南大洋生源碳产量,在南大洋  相似文献   

9.
冰藻是南北极海冰生物群落中最主要的组成部分,通过固定和输出碳、吸收养分、生产释放氧气和有机化合物,推动高纬度生态系统的生物地球化学循环,在南北极海洋生态系统中发挥着重要作用.从宏观到微观综述了近年来在海冰栖息环境特征、冰藻种类组成和群落结构、冰藻对极端环境的适应机制以及气候变化对海冰环境和冰藻的影响等方面的研究进展,并...  相似文献   

10.
谷胱甘肽系统在清除活性氧和生物保护中发挥重要作用,探讨了南极冰藻胞内谷胱甘肽含量及谷胱甘肽相关酶的活力.采用分光光度法,对24种南极冰藻胞内谷胱甘肽含量、谷胱甘肽合成能力(GPA)、谷胱甘肽还原酶活力等进行测定.测定结果表明,南极蓝藻B-1中谷胱甘肽含量最高;南极衣藻ICE-L和南极硅藻GJ01的谷胱甘肽总产量居前2位;南极冰藻GPA普遍高于常温藻的.南极硅藻GJ01和南极衣藻ICE-L GR活力高于对照组的.培养基的选择表明,f/2培养基适合南极硅藻GJ01的生长,而Provasoli培养基适合南极衣藻ICE-L的生长.可见,南极冰藻成为谷胱甘肽的新来源是有可能的,尤其是南极硅藻GJ01和南极衣藻ICE-L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号