首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present XMM data for the supercluster A901/2, at   z ∼ 0.17  , which is combined with deep imaging and 17-band photometric redshifts (from the COMBO-17 survey), two degree field (2dF) spectra and Spitzer 24 μm data, to identify active galactic nuclei (AGN) in the supercluster. The 90 ksec XMM image contains 139 point sources, of which 11 are identified as supercluster AGN with   L X(0.5−7.5 keV) > 1.7 × 1041 erg cm−2 s−1  . The host galaxies have   M R < −20  and only two of eight sources with spectra could have been identified as AGN by the detected optical emission lines. Using a large sample of 795 supercluster galaxies, we define control samples of massive galaxies with no detected AGN. The local environments of the AGN and control samples differ at ≳98 per cent significance. The AGN host galaxies lie predominantly in areas of moderate projected galaxy density and with more local blue galaxies than the control sample, with the exception of one very bright type I AGN very near the centre of a cluster. These environments are similar to, but not limited to, cluster outskirts and blue groups. Despite the large number of potential host galaxies, no AGN are found in regions with the highest galaxy density (excluding some cluster cores where emission from the intra-cluster medium obscures moderate luminosity AGN). AGN are also absent from the areas with lowest galaxy density. We conclude that the prevalence of cluster AGN is linked to their environment.  相似文献   

2.
We use a large suite of carefully controlled full hydrodynamic simulations to study the ram pressure stripping of the hot gaseous haloes of galaxies as they fall into massive groups and clusters. The sensitivity of the results to the orbit, total galaxy mass, and galaxy structural properties is explored. For typical structural and orbital parameters, we find that ∼30 per cent of the initial hot galactic halo gas can remain in place after 10 Gyr. We propose a physically simple analytic model that describes the stripping seen in the simulations remarkably well. The model is analogous to the original formulation of Gunn & Gott, except that it is appropriate for the case of a spherical (hot) gas distribution (as opposed to a face-on cold disc) and takes into account that stripping is not instantaneous but occurs on a characteristic time-scale. The model reproduces the results of the simulations to within ≈10 per cent at almost all times for all the orbits, mass ratios, and galaxy structural properties we have explored. The one exception involves unlikely systems where the orbit of the galaxy is highly non-radial and its mass exceeds about 10 per cent of the group or cluster into which it is falling (in which case the model underpredicts the stripping following pericentric passage). The proposed model has several interesting applications, including modelling the ram pressure stripping of both observed and cosmologically simulated galaxies and as a way to improve present semi-analytic models of galaxy formation. One immediate consequence is that the colours and morphologies of satellite galaxies in groups and clusters will differ significantly from those predicted with the standard assumption of complete stripping of the hot coronae.  相似文献   

3.
We present an investigation of satellite galaxies in the outskirts of galaxy clusters taken from a series of high-resolution N -body simulations. We focus on the so-called backsplash population, i.e. satellite galaxies that once were inside the virial radius of the host but now reside beyond it. We find that this population is significant in number and needs to be appreciated when interpreting the various galaxy morphology environmental relationships and decoupling the degeneracy between nature and nurture. Specifically, we find that approximately half of the galaxies with current cluster-centric distance in the interval 1–2 virial radii of the host are backsplash galaxies that once penetrated deep into the cluster potential, with 90 per cent of these entering to within 50 per cent of the virial radius. These galaxies have undergone significant tidal disruption, losing on average 40 per cent of their mass. This results in a mass function for the backsplash population different from those galaxies infalling for the first time. We further show that these two populations are kinematically distinct and should be observable within existent spectroscopic surveys.  相似文献   

4.
We present XMM–Newton observations of the wake–radio galaxy system 4C 34.16, which shows a cool and dense wake trailing behind the host galaxy of 4C 34.16. A comparison with numerical simulations is enlightening, as they demonstrate that the wake is produced mainly by ram pressure stripping during the galactic motion through the surrounding cluster. The mass of the wake is a substantial fraction of the mass of the X-ray halo of an elliptical galaxy. This observational fact supports a wake formation scenario similar to that recently demonstrated numerically by Acreman et al.: the host galaxy of 4C 34.16 has fallen into its cluster, and is currently crossing its central regions. A substantial fraction of its X-ray halo has been stripped by ram pressure, and remains behind to form the galaxy wake.  相似文献   

5.
Detailed three-dimensional numerical simulations of an elliptical galaxy orbiting in a gas-rich cluster of galaxies indicate that gas dynamic stripping is less efficient than the results from previous, simpler calculations by Takeda et al. and Gaetz et al. implied. This result is consistent with X-ray data for cluster elliptical galaxies. Hydrodynamic torques and direct accretion of orbital angular momentum can result in the formation of a cold gaseous disc, even in a non-rotating galaxy. The gas lost by cluster galaxies via the process of gas dynamic stripping tends to produce a colder, chemically enriched cluster gas core. A comparison of the models with the available X-ray data of cluster galaxies shows that the X-ray luminosity distribution of cluster galaxies may reflect hydrodynamic stripping, but also that a purely hydrodynamic treatment is inadequate for the cooler interstellar medium near the centre of the galaxy.  相似文献   

6.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

7.
We present an overview of the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). STAGES is a multiwavelength project designed to probe physical drivers of galaxy evolution across a wide range of environments and luminosity. A complex multicluster system at   z ∼ 0.165  has been the subject of an 80-orbit F606W Hubble Space Telescope (HST) /Advanced Camera for Surveys (ACS) mosaic covering the full     span of the supercluster. Extensive multiwavelength observations with XMM–Newton , GALEX, Spitzer , 2dF, Giant Metrewave Radio Telescope and the 17-band COMBO-17 photometric redshift survey complement the HST imaging. Our survey goals include simultaneously linking galaxy morphology with other observables such as age, star formation rate, nuclear activity and stellar mass. In addition, with the multiwavelength data set and new high-resolution mass maps from gravitational lensing, we are able to disentangle the large-scale structure of the system. By examining all aspects of an environment we will be able to evaluate the relative importance of the dark matter haloes, the local galaxy density and the hot X-ray gas in driving galaxy transformation. This paper describes the HST imaging, data reduction and creation of a master catalogue. We perform the Sérsic fitting on the HST images and conduct associated simulations to quantify completeness. In addition, we present the COMBO-17 photometric redshift catalogue and estimates of stellar masses and star formation rates for this field. We define galaxy and cluster sample selection criteria, which will be the basis for forthcoming science analyses, and present a compilation of notable objects in the field. Finally, we describe the further multiwavelength observations and announce public access to the data and catalogues.  相似文献   

8.
The colour–magnitude relation (CMR) of cluster elliptical galaxies has been widely used to constrain their star formation histories (SFHs) and to discriminate between the monolithic collapse and merger paradigms of elliptical galaxy formation. We use a Λ cold dark matter hierarchical merger model of galaxy formation to investigate the existence and redshift evolution of the elliptical galaxy CMR in the merger paradigm. We show that the SFH of cluster ellipticals predicted by the model is quasi-monolithic , with only ∼10 per cent of the total stellar mass forming after   z ∼ 1  . The quasi-monolithic SFH results in a predicted CMR that agrees well with its observed counterpart in the redshift range  0 < z < 1.27  . We use our analysis to argue that the elliptical-only CMR can be used to constrain the SFHs of present-day cluster ellipticals only if we believe a priori in the monolithic collapse model. It is not a meaningful tool for constraining the SFH in the merger paradigm, since a progressively larger fraction of the progenitor set of present-day cluster ellipticals is contained in late-type star-forming systems at higher redshift, which cannot be ignored when deriving the SFHs. Hence, the elliptical-only CMR is not a useful discriminant between the two competing theories of elliptical galaxy evolution.  相似文献   

9.
In Paper I we presented a methodology to recover the spatial variations of properties of the intracluster gas from ASCA X-ray satellite observations of galaxy clusters. We verified the correctness of this procedure by applying it to simulated cluster data sets that we had subjected to the various contaminants common in ASCA data. In this paper we present the results that we obtain when we apply this method to real galaxy cluster observations. We determine broad-band temperature and cooling-flow mass-deposition rates for the 106 clusters in our sample, and obtain temperature, abundance and emissivity profiles (i.e., at least two annular bins) for 98 of these clusters. We find that 90 per cent of these temperature profiles are consistent with isothermality at the 3 σ confidence level. This conflicts with the prevalence of steeply declining cluster temperature profiles found by Markevitch et al. from a sample of 30 clusters.  相似文献   

10.
We present 3D hydrodynamical simulations of ram-pressure stripping of a disc galaxy orbiting in a galaxy cluster. In this paper, we focus on the properties of the galaxies' tails of stripped gas. The galactic wakes show a flaring width, where the flaring angle depends on the gas disc's cross-section with respect to the galaxy's direction of motion. The velocity in the wakes shows a significant turbulent component of a few     . The stripped gas is deposited in the cluster rather locally, i.e. within     from where it was stripped. We demonstrate that the most important quantity governing the tail density, length and gas mass distribution along the orbit is the galaxy's mass-loss per orbital length. This in turn depends on the ram pressure as well as the galaxy's orbital velocity.
For a sensitivity limit of     in projected gas density, we find typical tail lengths of     . Such long tails are seen even at large distances (0.5 to     ) from the cluster centre. At this sensitivity limit, the tails show little flaring, but a width similar to the gas disc's size.
Morphologically, we find good agreement with the H  i tails observed in the Virgo cluster by Chung et al. 2007 . However, the observed tails show a much smaller velocity width than predicted from the simulation. The few known X-ray and Hα tails are generally much narrower and much straighter than the tails in our simulations. Thus, additional physics like a viscous intracluster medium (ICM), the influence of cooling and tidal effects may be needed to explain the details of the observations.
We discuss the hydrodynamical drag as a heat source for the ICM but conclude that it is not likely to play an important role, especially not in stopping cooling flows.  相似文献   

11.
With the help of a statistical parameter derived from optical spectra, we show that the current star formation rate of a galaxy, falling into a cluster along a supercluster filament, is likely to undergo a sudden enhancement before the galaxy reaches the virial radius of the cluster. From a sample of 52 supercluster-scale filaments of galaxies joining a pair of rich clusters of galaxies within the two-degree Field Redshift Survey region, we find a significant enhancement of star formation, within a narrow range between ∼2 and  3  h −170 Mpc  of the centre of the cluster into which the galaxy is falling. This burst of star formation is almost exclusively seen in the fainter dwarf galaxies  ( M B ≥−20)  . The relative position of the peak does not depend on whether the galaxy is a member of a group or not, but non-group galaxies have on average a higher rate of star formation immediately before falling into a cluster. From the various trends, we conclude that the predominant process responsible for this rapid burst is the close interaction with other galaxies falling into the cluster along the same filament, if the interaction occurs before the gas reservoir of the galaxy gets stripped off due to the interaction with the intracluster medium.  相似文献   

12.
We explore properties of close galaxy pairs and merging systems selected from the Sloan Digital Sky Survey Data Release 4 in different environments with the aim to assess the relative importance of the role of interactions over global environmental processes. For this purpose, we perform a comparative study of galaxies with and without close companions as a function of local density and host halo mass, carefully removing sources of possible biases. We find that at low- and high-local-density environments, colours and concentration indices of close galaxy pairs are very similar to those of isolated galaxies. At intermediate densities, we detect significant differences, indicating that close pairs could have experienced a more rapid transition on to the red sequence than isolated galaxies. The presence of a correlation between concentration index and colours indicates that the physical mechanism responsible for the colour transformation also operates in the transformation of the luminous matter distribution. At fixed local densities, we find a dependence of the red galaxy fraction on dark matter halo mass for galaxies with or without a close companion. This suggests the action of host halo mass related effects. Regardless of dark matter halo mass, we show that the percentage of red galaxies in close pairs and in the control sample are comparable at low- and high-local-density environments. However, at intermediate local densities, the gap in the red fraction between close pairs and the control galaxies increases from ∼10 per cent in low-mass haloes up to ∼50 per cent in the most massive ones. Interestingly, we also detect that 50 per cent of merging systems populate the intermediate local environments, with a large fraction of them being extremely red and bulge dominated. Our findings suggest that in intermediate-density environments galaxies are efficiently pre-processed by close encounters and mergers before entering higher local density regions.  相似文献   

13.
Using the Sloan Digital Sky Survey Data Release 4 group catalogue of Yang et al., we investigate sizes, concentrations, colour gradients and surface brightness profiles of central and satellite galaxies. We compare central and satellite galaxies at fixed stellar mass, in order to disentangle environmental from stellar mass dependencies. Early- and late-type galaxies are defined according to concentration. We find that at fixed stellar mass, late-type satellite galaxies have smaller radii and larger concentrations than late-type central galaxies. No such differences are found for early-type galaxies. We have also constructed surface brightness and colour profiles for the central and satellite galaxies in our sample. We find that late-type satellite galaxies have a lower surface brightness and redder colours than late-type central galaxies. We show that all observed differences between satellite and central galaxies can be explained by a simple fading model, in which the star formation in the disc decreases over time-scales of 2–3 Gyr after a galaxy becomes a satellite. Processes that induce strong morphological changes (e.g. harassment) and processes that strip the galaxy of its entire interstellar medium need not to be invoked in order to explain the environmental dependencies we find.  相似文献   

14.
We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Lambda cold dark matter (ΛCDM) model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity–metallicity and the stellar mass–metallicity (LZR and MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, M c≈ 3 × 1010 M, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z ∼ 3, with a very weak evolution of its metallicity content. The value and role played by M c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. Our findings suggest that systems with stellar masses smaller than M c are responsible for the evolution of this relation at least from z ≈ 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at   z ≥ 2  , showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z ∼ 3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify M c since, from   z = 3  this stellar mass is found in systems with circular velocities larger than 100 km s−1.  相似文献   

15.
This is the first part of a study of the detailed X-ray properties of the cores of nearby clusters. We have used the flux-limited sample of 55 clusters listed by Edge et al., and archival and proprietary data from the ROSAT observatory. In this paper an X-ray spatial analysis based on the surface-brightness-deprojection technique is applied to the clusters in the sample with the aim of studying their cooling flow properties. We determine the fraction of cooling flows in this sample to be 70–90 per cent, and estimate the contribution of the flow region to the cluster X-ray luminosity. We show that the luminosity within a strong cooling flow can account for up to 70 per cent of a cluster X-ray bolometric luminosity. Our analysis indicates that about 40 per cent of the clusters in the sample have flows depositing more than 100 M⊙ yr−1 throughout the cooling region, and that these possibly have been undisturbed for many Gyr, confirming that cooling flows are the natural state of cluster cores. New cooling flows in the sample are presented, and previously ambiguous ones are clarified. We have constructed a catalogue of some intracluster medium properties for the clusters in this sample. The profiles of the mass deposited from cooling flows are analysed, and evidence is presented for the existence of breaks in some of the profiles. Comparison is made to recent optical and radio data. We cross-correlate our sample with the Green Bank, NVSS and FIRST surveys, and with the volume-limited sample of brightest cluster galaxies presented by Lauer &38; Postman. Although weak trends exist, no strong correlation between optical magnitude or radio power of the brightest cluster galaxy and the strength of the flow is found.  相似文献   

16.
According to the new preheating mechanism of galaxy formation suggested by Mo et al., we construct a simple model of formation of disk galaxies within the current paradigm of galaxy formation. It incorporates preheating, gas cooling, bulge formation and star for-mation. The predicted stellar and HI mass functions of galaxies are discussed and compared with the observations. It is found that our model can roughly match both the observed galaxy luminosity function and the observed HI-mass function.  相似文献   

17.
We present predictions for the abundance of submillimetre galaxies (SMGs) and Lyman-break galaxies (LBGs) in the Λ cold dark matter cosmology. A key feature of our model is the self-consistent calculation of the absorption and emission of radiation by dust. The new model successfully matches the LBG luminosity function, as well as reproducing the properties of the local galaxy population in the optical and infrared. The model can also explain the observed galaxy number counts at 850 μm, but only if we assume a top-heavy initial mass function for the stars formed in bursts. The predicted redshift distribution of SMGs depends relatively little on their flux over the range 1–10 mJy, with a median value of   z ≈ 2.0  at a flux of 5 mJy, in good agreement with the recent measurement by Chapman et al. The counts of SMGs are predicted to be dominated by ongoing starbursts. However, in the model these bursts are responsible for making only a few per cent of the stellar mass locked up in massive ellipticals at the present day.  相似文献   

18.
19.
The radial distribution of globular clusters in galaxies is always less peaked to the centre than that of the halo stars. Extending previous work to a sample of Hubble Space Telescope globular cluster systems in ellipticals, we evaluate the number of clusters potentially lost to the galactic centre as the integrals of the difference between the observed globular cluster system distribution and the underlying halo light profile. In the sample of galaxies examined it is found that the initial populations of globular clusters may have been ∼30 per cent to 50 per cent richer than now. If these 'missing' globular clusters have decayed and have been partly destroyed in the very central galactic zones, they have carried there a significant quantity of mass that, plausibly, contributed to the formation and feeding of a massive object therein. It is relevant to note that the observed correlation between the core radius of the globular cluster system and the parent galaxy luminosity can be interpreted as a result of evolution.  相似文献   

20.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号