首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The sorption kinetics of heavy metal ions by organic suspension is considered in the case of a volley of wastewater into a channel flow. The characteristic time scales of the major kinetic stages of ionic sorption are estimated by using a model of matter sorption by particulate matter involving macrokinetic parameters and field data. The sorption on organic suspension and iron hydroxides is virtually instantaneous, whereas the characteristic time of sorption on clay particles is of the order of hours and days. A concept of sorption capacity of natural water is introduced. This capacity depends on the concentration of the sorbing suspension and the distribution coefficient of the dissolved forms of substances that can be sorbed, in particular, heavy metals. When the sorption capacity is small or sorption kinetics is slow, the dilution of wastewater becomes the main mechanism reducing the concentration of metal ionic forms.  相似文献   

2.
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.  相似文献   

3.
The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 μM of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.  相似文献   

4.
Examples of the impact of the content of organic matter and compounds of Al and Fe in freshwater sediments on the phosphorus release from the bottom are studied. The relationships between the phosphorus release from bottom sediments and organic matter concentration in sediments of 22 lakes of the world are obtained and discussed as a result of generalization of actual data.  相似文献   

5.
Heavy metal concentrations in bottom sediment in some reaches of the Upper (the Ivankovo Reservoir) and Lower Volga (from Volgograd to the mouth offshore area). The bottom sediment in the Ivankovo Reservoir are shown to be heavily polluted by Cu and Zn and to a lesser extent, by Co and Ni; heavy pollution with Ni and Cr and moderate pollution with Zn and Mn were recorded in the Lower Volga. Principal component procedure was used to assess bottom sediment pollution. The role of organic matter in the formation of the Ivankovo Reservoir bottom sediment pollution with heavy metals is shown to be moderate because of the weak correlation between heavy metal concentration and organic matter content of bottom sediment. The same is true for the Lower Volga because of low organic matter content of bottom sediment. The major role in the redox cycle of elements is shown to belong to Fe in the Ivankovo Reservoir and Mn in the Lower Volga.  相似文献   

6.
The results of studying the forms of aluminum occurrence in water bodies of Ukraine with different water regime and physical and chemical characteristics are discussed. The quantitative relationships between suspended and dissolved forms of aluminum, the relationship between suspended aluminum and the mass of suspended matter, and the role of complexation in Al(III) migration are considered. The distribution of Al(III) among complex compounds with dissolved organic substances with different chemical nature and molecular mass (anionic fraction) is analyzed. Humic substances are shown to play the major role in Al(III) binding.  相似文献   

7.
Annual variations in concentrations of Fe forms in the bottom water (0–70 cm from the bottom, by layers), pore water, and in solid phase of silts (25 cm, by layers) of the Krasnovidovo Pool channel area of the Mozhaisk Reservoir are studied. A drastic increase in the concentration and ratio of Fesusp/Fedis in the water layer 0–20 cm from the bottom is detected. Fe(II) dominates in dissolved and suspended forms. The concentrations of Fe(III) reaching 2–3 mg/l were for the fist time revealed in the pore water of silts (Eh ~ ?120 mV). The factors responsible for this phenomenon are discussed. Fe flux from sediments is tentatively assessed as 0.2–0.6 mg Fe m2/day.  相似文献   

8.
This paper reviews the major sources and transport characteristics of heavy metals in the hydrological cycle. It is demonstrated that heavy metal releases to the environment have changed from 19th and early 20th century production-related activities to consumption-oriented factors in more recent times. The relative roles of particle size, sorption and desorption processes, partitioning and the chemical speciation of heavy metals on fine sediments are identified to understand the likely fate of heavy metals released into fluvial systems. It is argued that the spatial and temporal distribution of heavy metals in the river corridor depends not only on an understanding of metal solubility and speciation, but also on an understanding of sediment dynamics which control, for example, floodplain alluviation and the accumulation of metals in the bottom sediments of contaminated rivers, lakes and reservoirs. Existing long- and short-term records are examined to identify the current state of knowledge about the factors which affect heavy metal releases into aquatic environments. With limited exceptions, it is shown that few long-term studies of trends in heavy metal transport are available although, for some major rivers, limited data on trends in metal concentration exists. Palaeolimnological reconstruction techniques, based on an analysis of lake and reservoir sediments, are identified as a possible means of supplementing monitored records of heavy metal transport. Although numerous studies have suggested that trends in atmospheric contamination, mining and urbanization may be identified in the bottom sediment record, other research has shown that the radionuclide-based chronology and the heavy metal distribution within the sediment are more likely to be a function of post-depositional remobilization than the history of metal loading to the basin. Despite these limitations, it is shown that the incorporation of reservoir bottom sediment analysis into a heavy metal research programme, based in river corridors of Midland England, provides an opportunity to identify and quantify the relative contribution of point and non-point contributions to the heavy metal budget and to relate trends in metal contamination to specific periods of catchment disturbance.  相似文献   

9.
沉积物中有机质的环境行为研究进展   总被引:57,自引:5,他引:52  
朱广伟  陈英旭 《湖泊科学》2001,13(3):272-279
水体沉积物是重金属,有毒有机化合物等环境污染物及C,N,P等营养元素的汇和释放源,而有机质对灾些污染物和营养元素在沉积物中的迁移,转化等地球化学行为中起着至关重要的作用,本文就近期有关沉积物中有机质的环境地球化学行为为方面的研究进行了综述,重点评述了有关沉积物中有机质本身的来源,性质,迁移和矿化及其环境效应等方面的研究进展。  相似文献   

10.
In this study,accumulation and distribution of Pb,Cu,Zn,Co,Ni,Mn and Fe in water,bottom sediments and four plant species (Myriophyllum verticillatum,Hydrocharis morsus-ranae,Nymphaea alba and Typha latifolia) were investigated in (C)ernek Lake of Kizihrmak Delta.The Kizdirmak Delta is one of the largest natural wetlands of Turkey and it is protected by the Ramsar convention since 1993.Selected physico-chemical parameters such as pH,conductivity and dissolved oxygen and also trace metal concentrations were monitored in water.All the parameters obtained were found higher than that of the national standards for the protected lakes and reserves.The accumulated amounts of various trace metals in bottom sediments and wetland plants were found in the following order of Fe > Mn > Zn > Ni > Co > Cu > Pb and Fe > Mn > Zn > Ni > Co respectively.The historical trace metal intake of Myriophyllum verticillatum,Hydrocharis morsus-ranae,Typha latifolia and Nymphaea alba were obtained higher than that of the toxic metal levels and these plants may be accepted as accumulators for the detected trace metals and also bioindicators in the historically polluted natural areas.  相似文献   

11.
Concentrations of heavy metals (Cd, Cu, Pb and Zn) on suspended sediments during a flood event at Thwaite Mills, River Aire, were analysed using a five step sequential extraction technique to determine their major chemical associations (exchangeable, surface oxide and carbonate, Fe and Mn oxides, organic and residual metal ions). Total metal concentrations were lowest at higher discharges, resulting from dilution by clean sediment. The major transport fractions are the Fe and Mn oxides, which carry 29% of the total metals. Knowledge of the chemical forms of heavy metals on suspended sediment is essential for estimating their biological availability and physicochemical reactivity. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
The formation and accumulation of bottom sediments in the Senezh Reservoir are discussed on the basis of field observations. Data on the bottom sediment thickness, the rates of accumulation, and the concentrations of organic substances, metals, petroleum products, and organic pollutants are presented. The bottom sediments of the reservoir are demonstrated to be still no source of secondary pollution.  相似文献   

13.
《Marine pollution bulletin》2013,77(1-2):139-145
The sorption of phenanthrene on the Yangtze Estuary sediment was studied under varying conditions of particle size, sediment organic contents, salinity, and dissolved organic matter (DOM) concentrations. Small sediment particles showed higher trapping capacity for phenanthrene due to the higher organic contents associated. The organic carbon-based partition coefficient of phenanthrene to the Yangtze Estuary sediment was obtained as 7120 L/kg, lower than the values for other soils or sediments reported in previous studies. The magnitude and direction of the salt effect were complicated by the specific DOM studied. The sediment sorption capacity was greatly increased in saline water in the absence of DOM but decreased in the presence of DOM. Given the conditions in the Yangtze Estuary, the equilibrium sorption of phenanthrene would be decreased with increasing salinity. Overall, the nature and content of both sediment-bound and dissolved organic matter dominate the sorption of hydrophobic organic contaminants in the estuary.  相似文献   

14.
The sorption behavior of nonylphenol (NP, a toxic endocrine disruptor) on marine sediments was studied in detail through a series of kinetic and thermodynamic sorption experiments. The results showed that the sorption reaction of NP on marine sediments reached equilibrium in 1.5 h and that it accorded well with the non-linear Ho-McKay pseudo-second-order model. The sorption isotherms of NP on H2O-treated sediments could be well described by the Linear isotherm model, while the sorption isotherm on H2O2-treated sediments could be well fitted with the Freundlich isotherm model. A positive correlation was found between the distribution coefficient (Kd) and the sediment organic carbon contents. The medium salinity showed a positive relation with the Kd and a negative relation with the dissolved organic carbon (DOC). Hexadecyl trimethyl ammonium bromide (CTAB) enhanced the sorption amount of NP the most, while sodium dodecylbenzenesulfonate (SDBS) enhanced it the least. The sorption reaction of NP on marine sediments was a spontaneous, physical, exothermic and entropy-decreasing process.  相似文献   

15.
Traits have been revealed in the microbial processes of methane formation and organic matter destruction in bottom sediments of technogenic water bodies, in which at the abundance of Corg compounds, including toxic, dissolved oxygen deficiency, and low redox potential, organic matter decay in sediments is mostly anaerobic with the predominance of methanogenesis and sulfate reduction. Data on major microbial processes are used to calculate the total sludge destruction; it is maximal in the sediments of low-toxicity technogenic water bodies; organic matter destruction in them is mostly due to methanogenesis; it is minimal in high-toxicity water bodies, the share of sulfate reduction in them increases, and that of methanogenesis decreases.  相似文献   

16.
A preparative method was developed to sample dissolved organic carbon (DOC) and heavy metals (Ni, Mn) from polluted surface waters. Main focus was set on the preparative production of freeze‐dried samples mainly composed of organic ligands from heavy metal complexes. First characterizations were done in the aqueous phase. Finally, freeze‐dried samples provide stable organic matter for multiple characterizations. Acid mine drainage of the former mining area of Ronneburg (Germany) hold elevated concentrations of heavy metals and low concentrations of DOC. Municipal wastewater, passing the spoil pile, held elevated concentrations of DOC and low concentrations of heavy metals. Dissolved components smaller than 0.45 μm and larger than 1 nm were concentrated by nanofiltration. Organic heavy metal complexes were isolated from this solution by size‐exclusion chromatography (SEC). Different size classes of molecules were collected from the column effluent, depending on their elution time, and were characterized by UV spectroscopy, ICP‐OES, and DOC measurements. All samples held organic heavy metal compounds with different retention times. The organic heavy metal complexes in acid mine drainage had higher retention times than complexes from municipal wastewater. Most interestingly, we found different affinities of heavy metals to different size classes of DOC. This affinity of the heavy metals differs with size and origin of the DOC.  相似文献   

17.
Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe‐hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude‐oil‐contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe‐hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe‐hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.  相似文献   

18.
The nearshore sediments in the Bay of Naples show a buildup of organic carbon and increased levels of lead, copper and chromium as a result of discharge of domestic and industrial waste water. Twenty to twenty-five square kilometres of bottom area have been contaminated by the buildup of anoxic muds with elevated heavy metal concentrations.  相似文献   

19.
Results of studying group and constituent composition of natural organic and mineral substances in silt bottom sediments of non-contaminated freshwater bodies are presented. The chemical composition of the investigated bottom sediments is shown to be complicated, diverse, and include products of autochthonous and allochthonous substance transformation. The necessity of further studying the concentrations of nutrients found in the bottom sediments of non-contaminated freshwater bodies, regarded as the “background” in estimating their environmental state, in studying processes occurring within water bodies, in determining natural and anthropogenic components of mineral and organic substances, as well as in estimating the balneologic value of the water bodies in question is substantiated.  相似文献   

20.
The purpose of this study was to assess the chemical partitioning of selected heavy metals(Fe,Mn,Cu,Zn,Pb,Cr,Co and Ni) in 10 surface sediments at Tirumalairajan River Estuary in the southeastern coast of India.A five-step sequential extraction technique was used to assess the environmental status of heavy metals.Most of metals were considered to be immobile due to the high availability in the residual fraction of heavy metals.The sediments of Tirumalairajan River estuary had not been polluted by heavy metals,and they didn’t pose any high ecological risk.The seasonal variations of heavy metals were slightly higher in summer than in monsoon season.Factor analysis was also carned out to understand the associations of metals in different fractions with sand,silt,clay,organic matter,pH,salinity and other metals.The relationship between the Q-mode and R-mode cluster analyses was useful for identifying the pollution levels in both seasons.It was proved that the enrichment of heavy metals was related with geogenic and anthropogenic sources.The information on total metal concentrations in sediments was not sufficient for assessing the metal behavior in the environment,but the sequential extraction technique was more effective in estimating the environmental impact of contaminated sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号