首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Global lopsided instability in a purely stellar galactic disc   总被引:1,自引:0,他引:1  
It is shown that pure exponential discs in spiral galaxies are capable of supporting slowly varying discrete global lopsided modes, which can explain the observed features of lopsidedness in the stellar discs. Using linearized fluid dynamical equations with the softened self-gravity and pressure of the perturbation as the collective effect, we derive self-consistently a quadratic eigenvalue equation for the lopsided perturbation in the galactic disc. On solving this, we find that the ground-state mode shows the observed characteristics of the lopsidedness in a galactic disc, namely the fractional Fourier amplitude A 1, increases smoothly with the radius. These lopsided patterns precess in the disc with a very slow pattern speed with no preferred sense of precession. We show that the lopsided modes in the stellar disc are long-lived because of a substantial reduction (approximately a factor of 10 compared to the local free precession rate) in the differential precession. The numerical solution of the equations shows that the ground-state lopsided modes are either very slowly precessing stationary normal mode oscillations of the disc or growing modes with a slow growth rate depending on the relative importance of the collective effect of the self-gravity. N -body simulations are performed to test the spontaneous growth of lopsidedness in a pure stellar disc. Both approaches are then compared and interpreted in terms of long-lived global   m = 1  instabilities, with almost zero pattern speed.  相似文献   

2.
We study the persistence of warps in galactic discs in the presence of massive haloes. A disc is approximated by a set of massive rings, while a halo is represented by a conventional n -body simulation. We confirm the conclusion of Nelson &38; Tremaine that a halo responds strongly to an embedded precessing disc. This response invalidates the approximations made in the derivation of classical 'modified tilt' modes. We show that the response of the halo causes the line of nodes of a disc that starts from a modified tilt mode to wind up within a few dynamical times. We explain this finding in terms of the probable spectrum of true normal modes of a combined disc–halo system. The key physical point is that in each radial range the halo rapidly aligns with the disc, so calculations based on the assumption that, in the presence of a warped disc, the halo retains a regular spheroidal structure are based on a fatally flawed assumption.  相似文献   

3.
The stability of a recently proposed general relativistic model of galaxies is studied in some detail. This model is a general relativistic version of the well-known Miyamoto–Nagai model that represents well a thick galactic disc. The stability of the disc is investigated under a general first-order perturbation keeping the space–time metric frozen (no gravitational radiation is taken into account). We find that the stability is associated with the thickness of the disc. We find that flat galaxies have more non-stable modes than the thick ones, i.e. flat galaxies have a tendency to form more complex structures like rings, bars and spiral arms.  相似文献   

4.
This paper presents a global analysis of the 2MASS (Two Micron All Sky Survey) data as observed in seven fields at different galactic latitudes in our Galaxy. The data allow the preliminary determination of the scale parameters, which lead to strong constraints on the radial and vertical structure of the galactic thin and thick disc. The interpretation of star counts and colour distributions of stars in the near-infrared with the synthetic stellar population model gives strong evidence that the galactic thin disc density scalelength ( h R ) is rather short (2.8±0.3 kpc). The galactic thick disc population is revisited in the light of new data. We find the thick disc to have a local density of 3.5±2.0 per cent of the thin disc, exponential scaleheight ( h z ) of 860±200 pc and exponential scalelength ( h R ) of 3.7±0.50.8 kpc.  相似文献   

5.
We present a highly simplified model of the dynamical structure of a disc galaxy where only two parameters fully determine the solution, mass and angular momentum. We show through simple physical scalings that once the mass has been fixed, the angular momentum parameter λ is expected to regulate such critical galactic disc properties as colour, thickness of the disc and bulge-to-disc ratio. It is, hence, expected to be the determinant physical ingredient resulting in a given Hubble type. A simple analytic estimate of λ for an observed system is provided. An explicit comparison of the distribution of several galactic parameters against both Hubble type and λ is performed using observed galaxies. Both such distributions exhibit highly similar characteristics for all galactic properties studied, suggesting λ as a physically motivated classification parameter for disc galaxies.  相似文献   

6.
A recent observation with the Hipparcos satellite and some numerical simulations imply that the interaction between an oblate halo and a disc is inappropriate for the persistence of galactic warps. Following on from this , we have compared the time evolution of galactic warps in a prolate halo with that in an oblate halo. The haloes were approximated as fixed potentials, while the discs were represented by N -body particles. We have found that the warping in the oblate halo continues to wind up, and finally disappears. On the other hand, for the prolate halo model, the precession rate of the outer disc increases when the precession of the outer disc recedes from that of the inner disc, and vice versa. Consequently, the warping in the prolate halo persisted to the end of the simulation by retaining the alignment of the line of nodes of the warped disc. Therefore, our results suggest that prolate haloes could sustain galactic warps. The physical mechanism of the persistence of warp is discussed on the basis of the torque between a halo and a disc and that between the inner and outer regions of the disc.  相似文献   

7.
We study the chemical and spectrophotometric evolution of galactic discs with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results with a large body of observational data on present-day galactic discs, including disc sizes and central surface brightness, Tully–Fisher relations in various wavelength bands, colour–colour and colour–magnitude relations, gas fractions versus magnitudes and colours and abundances versus local and integrated properties, as well as spectra for different galactic rotational velocities. Despite the extremely simple nature of our models, we find satisfactory agreement with all those observables, provided that the time-scale for star formation in low-mass discs is longer than for more massive ones. This assumption is apparently in contradiction with the standard picture of hierarchical cosmology. We find, however, that it is extremely successful in reproducing major features of present-day discs, like the change in the slope of the Tully–Fisher relation with wavelength, the fact that more massive galaxies are on average 'redder' than low-mass ones (a generic problem of standard hierarchical models) and the metallicity–luminosity relation for spirals. It is concluded that, on a purely empirical basis, this new picture is at least as successful as the standard one. Observations at high redshifts could help to distinguish between the two possibilities.  相似文献   

8.
We study the relations between luminosity and chemical-abundance profiles of spiral galaxies, using detailed models for the chemical and spectrophotometric evolution of galactic discs. The models are 'calibrated' on the Milky Way disc and are successfully extended to other discs with the help of simple 'scaling' relations, obtained in the framework of semi-analytic models of galaxy formation. We find that our models exhibit oxygen abundance gradients that increase in absolute value with decreasing disc luminosity (when expressed in dex kpc−1) and are independent of disc luminosity (when expressed in dex scalelength−1), both in agreement with observations. We notice an important strong correlation between abundance gradient and disc scalelength. These results support the idea of 'homologous evolution' of galactic discs.  相似文献   

9.
We investigate the dynamical effects of a molecular cloud complex with a mass ∼ 107 M and a size ∼ a few 100 pc on the vertical distribution of stars and atomic hydrogen gas in a spiral galactic disc. Such massive complexes have now been observed in a number of spiral galaxies. The extended mass distribution in a complex, with an average mass density 6 times higher than the Oort limit, is shown to dominate the local gravitational field. This results in a significant redistribution or clustering of the surrounding disc components towards the mid-plane, with a resulting decrease in their vertical scaleheights.
The modified, self-consistent stellar density distribution is obtained by solving the combined Poisson equation and the force equation along the z -direction for an isothermal stellar disc on which the complex is imposed. The effect of the complex is strongest at its centre, where the stellar mid-plane density increases by a factor of 2.6 and the vertical scaleheight decreases by a factor of 3.4 compared with the undisturbed stellar disc. A surprising result is the large radial distance of ∼ 500 pc from the complex centre over which the complex influences the disc; this is due to the extended mass distribution in a complex. The complex has a comparable effect on the vertical distribution of the atomic hydrogen gas in the galactic disc. This 'pinching' or constraining effect should be detectable in the nearby spiral galaxies, as for example has been done for NGC 2403 by Sicking. Thus the gravitational field of a complex results in local corrugations of the stellar and H  i vertical scaleheights, and the galactic disc potential is highly non-uniform on scales of the intercomplex separation of ∼ 1 kpc.  相似文献   

10.
11.
In the first paper of this series, we directly studied the mathematical forms, symmetry of spiral structure, and the projection of galactic discs on the images, and measured the pitch angles of the spiral arms and inclination angles of the galactic discs for 60 spiral galaxies. In this second paper, we estimate the vertical scale parameters of 48 non-edge-on spiral galaxies based on the method proposed by Peng et al. and on the results given in Paper Ⅰ. As we know, for edge-on disc galaxies we can obtain the vertical scale parameter from the photometry, once a mathematical form is specified for the vertical light distribution. For non-edgeon galaxies, some other methods have to be used. The statistical result was that the vertical scale parameter is comparable for edge-on and non-edge-on galaxies, although it is obtained from two very different methods.  相似文献   

12.
We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry–Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of  ∼200 km s−1  as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.  相似文献   

13.
The non‐linear dynamics of bending instability and vertical structure of a galactic stellar disc embedded into a spherical halo are studied with N‐body numerical modelling. Development of the bending instability in stellar galactic disc is considered as the main factor that increases the disc thickness. Correlation between the disc vertical scale height and the halo‐to‐disc mass ratio is predicted from the simulations. The method of assessment of the spherical‐to‐disc mass ratio for edge‐on spiral galaxies with a small bulge is considered. Modelling of eight edge‐on galaxies: NGC 891, NGC 4738, NGC 5170, UGC 6080, UGC 7321, UGC 8286, UGC 9422 and UGC 9556 is performed. Parameters of stellar discs, dark haloes and bulges are estimated. The lower limit of the dark‐to‐luminous mass ratio in our galaxies is of the order of one within the limits of their stellar discs. The dark haloes dominate by mass in the galaxies with very thin stellar discs (NGC 5170, UGC 7321 and UGC 8286) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the self-consistent, linear response of a galactic disc to vertical perturbations, as induced, say, by a tidal interaction. We calculate the self-gravitational potential corresponding to a non-axisymmetric, self-consistent density response of the disc using the Green's function method. The response potential is shown to oppose the perturbation potential because the self-gravity of the disc resists the imposed potential, and this resistance is stronger in the inner parts of a galactic disc. For the   m = 1  azimuthal wavenumber, the disc response opposes the imposed perturbation up to a radius that spans a range of 4–6 disc scalelengths, so that the disc shows a net warp only beyond this region. This physically explains the well known but so far unexplained observation that warps typically set in beyond this range of radii. We show that the inclusion of a dark matter halo in the calculation only marginally changes (by ∼10 per cent) the radius for the onset of warps. For perturbations with higher azimuthal wavenumbers, the net signature of the vertical perturbations can only be seen at larger radii – for example, beyond 7 exponential disc scalelengths for   m = 10  . Also, for the high- m cases, the magnitude of the negative disc response due to the disc self-gravity is much smaller. This is shown to result in corrugations of the mid-plane density, which explains the puzzling scalloping with   m = 10  detected in H  i in the outermost regions ∼30 kpc in the Galaxy.  相似文献   

15.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   

16.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

17.
We have tested the applicability of the global modal approach in the density wave theory of spiral structure for a sample of spiral galaxies with measured axisymmetric background properties. We report here the results of the simulations for four galaxies: NGC 488, NGC 628, NGC 1566, and NGC 3938. Using the observed radial distributions for the stellar velocity dispersions and the rotation velocities we have constructed the equilibrium models for the galactic disks in each galaxy and implemented two kinds of stability analyses - the linear global analysis and 2D-nonlinear simulations. In general, the global modal approach is able to reproduce the observed properties of the spiral arms in the galactic disks. The growth of spirals in the galactic disks can be physically understood in terms of amplification by over-reflection at the corotation resonance. Our results support the global modal approach as a theoretical explanation of spiral structure in galaxies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
19.
We study, through 2D hydrodynamical simulations, the feedback of a starburst on the ISM of typical gas-rich dwarf galaxies. The main goal is to address the circulation of the ISM and metals following the starburst. We assume a single-phase rotating ISM in equilibrium in the galactic potential generated by a stellar disc and a spherical dark halo. The starburst is assumed to occur in a small volume in the centre of the galaxy, and it generates a mechanical power of 3.8×1039 or 3.8×1040 erg s−1 for 30 Myr. We find, in accordance with previous investigations, that the galactic wind is not very effective in removing the ISM. The metal-rich stellar ejecta, however, can be efficiently expelled from the galaxy and dispersed in the intergalactic medium.
Moreover, we find that the central region of the galaxy is always replenished with cold and dense gas a few 100 million years after the starburst, achieving the requisite for a new star formation event in ≈0.5–1 Gyr. The hydrodynamical evolution of galactic winds is thus consistent with the episodic star formation regime suggested by many chemical evolution studies.
We also discuss the X-ray emission of these galaxies and find that the observable (emission-averaged) abundance of the hot gas underestimates the real one if thermal conduction is effective. This could explain the very low hot-gas metallicities estimated in starburst galaxies.  相似文献   

20.
We present the first results of a systematic analysis of radially truncated exponential discs for four galaxies of a complete sample of disc-dominated edge-on spiral galaxies.
The discs of our sample galaxies are truncated at similar radii on either side of their centres. With the possible exception of the disc of ESO 416-G25, it appears that the truncations in our sample galaxies are closely symmetric, in terms of both their sharpness and the truncation length. However, the truncations occur over a larger region and not as abruptly as found in previous studies.
We show that the truncated luminosity distributions of our sample galaxies, if also present in the mass distributions, comfortably meet the requirements for longevity. The formation and maintenance of disc truncations are probably closely related to stability requirements for galactic discs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号