首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two borehole geophysical methods—electromagnetic induction and natural gamma radiation logs—were used to vertically delineate landfill leachate plumes in a glacial aquifer. Geophysical logs of monitoring wells near two land-fills in a glacial aquifer in west-central Vermont show that borehole geophysical methods can aid in interpretation of geologic logs and placement of monitoring well screens to sample landfill leachate plumes.
Zones of high electrical conductance were delineated from the electromagnetic log in wells near two landfills. Some of these zones were found to correlate with silt and clay units on the basis of drilling and gamma logs. Monitoring wells were screened specifically in zones of high electrical conductivity that did not correlate to a silt or clay unit. Zones of high electrical conductivity that did not correlate to a silt or clay unit were caused by the presence of ground water with a high specific conductance, generally from 1000 to 2370 μS/cm (microsiemens per centimeter at 25 degrees Celsius). Ambient ground water in the study area has a specific conductance of approximately 200 to 400 μS/cm. Landfill leachate plumes were found to be approximately 5 to 20 feet thick and to be near the water table surface.  相似文献   

2.
Pope JP  Burbey TJ 《Ground water》2004,42(1):45-58
Measurement and analysis of aquifer-system compaction have been used to characterize aquifer and confining unit properties when other techniques such as flow modeling have been ineffective at adequately quantifying storage properties or matching historical water levels in environments experiencing land subsidence. In the southeastern coastal plain of Virginia, high-sensitivity borehole pipe extensometers were used to measure 24.2 mm of total compaction at Franklin from 1979 through 1995 (1.5 mm/year) and 50.2 mm of total compaction at Suffolk from 1982 through 1995 (3.7 mm/year). Analysis of the extensometer data reveals that the small rates of aquifer-system compaction appear to be correlated with withdrawals of water from confined aquifers. One-dimensional vertical compaction modeling indicates measured compaction is the result of nonrecoverable hydrodynamic consolidation of the fine-grained confining units and interbeds, as well as recoverable compaction and expansion of coarse-grained aquifer units. The calibrated modeling results indicate that nonrecoverable specific storage values decrease with depth and range from 1.5 x 10(-5)/m for aquifer units to 1.5 x 10(-4)/m for confining units and interbeds. The aquifer and Potomac system recoverable specific storage values were all estimated to be 4.5 x 10(-6)/m, while the confining units and interbeds had values of 6.0 x 10(-6)/m. The calibrated vertical hydraulic conductivity values of the confining units and interbeds ranged from 6.6 x 10(-4) m/year to 2.0 x 10(-3) m/year. These parameter values will be useful in future management and modeling of ground water in the Virginia Coastal Plain.  相似文献   

3.
Merokarst aquifers — relatively thin (<1–2 m) karstified carbonate units interbedded between mudstone, shale, or sandstone — constitute a significant proportion of carbonate terrain and underlie a large portion of the west- and south-central USA, yet few advances have been made in our understanding of porosity development and flow-path generation in these complex systems in decades. Toward this end, we used a multi-geophysical approach at the well-studied Konza Prairie Biological Station (KPBS), a part of the larger Flint Hills (25,734 km2), underlain by thin limestone units (1–2 m thick) interbedded with mudstone/shale units (2–4 m thick), to elucidate hydrologic connectivity and potential controls on known groundwater flow directions. We combined electrical resistivity tomography (ERT), surface and borehole nuclear magnetic resonance (NMR), and ground penetrating radar (GPR) measurements across a low order catchment where over 25 boreholes and groundwater wells sampling perched aquifers could be used to constrain interpretation of lithology, potential flow paths, and permeability. Data revealed that groundwater export may be an unappreciated component of lateral-flow-dominated models used to represent merokarst in that: (a) potentiometric surfaces from two limestone units showed groundwater flows toward a hydrologic depression, opposite the direction of stream flow, in the upstream portion of the catchment, (b) long term measures of groundwater levels revealed a greater variance and overall water storage in this same upstream area compared to wells near the outlet, and (c) ERT and NMR results indicate pronounced lateral heterogeneity within a given unit, suggestive of a greater degree of vertical hydrological connectivity than usually considered for horizontally-layered merokarst. Our data suggest vertical connectivity can shunt water to depth in these “sandwiched” merokarst aquifers, yielding atypical groundwater flow directions and unrealized deep export of weathering solutes and carbon.  相似文献   

4.
Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface‐drilled borehole. Using a U‐tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460‐m‐thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non‐drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with δ18O values ~5‰ lower than the local surface water. The fluid isotopic composition was affected by the permafrost‐formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface‐drilled borehole/U‐tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.  相似文献   

5.
Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.  相似文献   

6.
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three‐dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high‐resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time‐lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.  相似文献   

7.
There is often a need to estimate the variation in water quality and flow rate with depth in an aquifer given access only to an uncased borehole. In such situations, borehole logging techniques can be applied. This paper describes the Reversed Flow Test (RFT), a rarely used borehole logging method. The RFT is intended to provide information on pore water quality and inflow rates along the length of an uncased borehole profile. They are carried out by logging the conductivity of the borehole fluid under two pumping phases. During the first pumping phase the pump intake is located at the top of the borehole, and during the second the intake is located at the base. Provided the pumping rates are low and the system does not have marked lateral heterogeneity, stable conductivity profiles are often achieved within a relatively short time period. The data are interpreted to give estimates of electrical conductivity and inflow at each point in the profile. The test has been successfully carried out on a range of British aquifers, and four case histories are summarized here. In each case, the test was easily accomplished by two people in less than a day.  相似文献   

8.
The paper analyzes the correlation between the electrical conductivity and temperature in the upper crust of the Bishkek geodynamic research area (the Northern Tien Shan). Electrical conductivity profiles constructed from magnetotelluric data and thermograms from the boreholes near magnetotelluric sounding (MTS) points are used for estimations. The correlation analysis of conductivity and temperature profiles to depths of 3–4 km showed that, first, the correlation coefficients do not depend on the distance between the borehole and the nearest MTS point; second, the good correlation between the conductivity and temperature observed for the majority of borehole-MTS point pairs is accounted for by the fact that the study parameters vary with depth in a manner normal for laminated sedimentary rocks; and, third, a low correlation is due to specific features of the geological structure between the borehole and MTS point under consideration.  相似文献   

9.
A suite of electrical, radiation, and mechanical borehole probes were run in a 76-mm-diameter borehole drilled to a slant depth of 380 m in leptite and granite. The hole is located in Precambrian bedrock in central Sweden where a site is dedicated to in-situ experiments pertaining to the disposal of radioactive wastes. The challenge to borehole logging methods for such site investigations is to resolve geological features and fluid flow parameters in geological sites which are initially chosen for their homogeneity, low porosity, and minimal fracturing. The Stripa borehole is characterized by high electrical resistivity values in the 20–100 kΩm range, by acoustic velocities around 5800 m s-1 (which is close to laboratory values on intact specimens), and by total porosity of around one volume percent. In this context, probe resolution was adequate to produce interpretable information on almost all of the logs. Two principal rock types were encountered in the hole: granite, of quartz monzonitic composition, and leptite. The granite and leptite intercepts are subdivided into units characterized by mafic mineral content, sulfide mineral content, and electrical and radiation properties. Iron-rich zones in the leptite are highly anomalous on the gamma-gamma and neutron logs; thin mafic zones in the granite can also be distinguished. Occurrences of a few percent pyrite are detected by the electrical, gamma-gamma, and neutron logs. Although overall porosity is quite low throughout the hole, analysis of the resistivity and neutron logs indicates the porosity increases by a few volume percent at fracture zones. The differential resistance and caliper probes detect borehole diameter roughness of less than 1 mm, helping to confirm acoustic waveform anomalies which are indicative of fracture zones. Compres-sional wave transit time and shear-wave interference patterns usually occur coincident with open fractures observed in core, the correlation being especially good at major fracture zones.  相似文献   

10.
Electrical conductivity (EC) logs were obtained by both open‐borehole logging and passive multilevel sampling (MLS) in an observation borehole penetrating the Coastal Aquifer in Tel Aviv, Israel. Homogeneous vertical velocities for a 70‐m thick subaquifer were approximated from each profile using a steady‐state advection‐diffusion model. The open‐borehole log led to an overestimation of the steady‐state upward advective flux of deep brines (vertical velocity of 0.95 cm/yr as compared to 0.07 cm/yr for the MLS profile). The combination of depth‐dependent data and the suggested simple modeling approach comprises a method for assessing the vertical location of salinity sources and the nature of salt transport from them (i.e., advective vs. diffusive). However, in this case, the easily obtained open‐borehole logs should not be used for collecting depth‐dependent data.  相似文献   

11.
On the Difficulty of Detecting Streaming Potentials Generated at Depth   总被引:1,自引:0,他引:1  
— In order to investigate how a streaming potential coefficient measured in the laboratory, at a typical scale of 10 cm, can be incorporated into a field model, with a typical scale of 1 to 10 km, we measured the electric field induced by water flows forced at 150 m depth through a 10-m wide granite fractured zone. The water flows were obtained by pumping cyclically 10 m of water from a borehole that cut the fractured zone at depth, and contemporaneously reinjecting it into another borehole located 50 m away. After one day a steady-state fluid flow regime was reached, with pumping cycles lasting 45 minutes, indicating a hydraulic conductivity of 10?5 m s?1 and a specific storage coefficient of 3.25×10?6 m?1. The expected self-potential at the surface was an anomaly with two maxima of opposite sign and 2μV amplitude each, both located 160 m away from the middle of the borehole heads, the signal being divided by two 500 m away from the middle of the borehole heads (in agreement with Wurmstich and Morgan, 1994). Instead, we observed an electrical signal of 8 mV midway between the borehole heads, and smaller than 5 mV, 33 m away from the borehole heads. The discrepancy observed between the data and the model can be explained by fluid flow leakages that occurred close to the water-table head, represented about 20% of the total water flow, and activated smaller but closer electric sources. This experiment thus illustrates the practical difficulty of detecting streaming potentials generated at depth. It shows in particular that in fractured zones, and hence in the vicinity of a major active fault small water flows located distantly from an energetic targeted source, but close to some of the electrodes of the network, can sometimes drastically distort the shape of the expected anomaly. Models of possible electrical earthquake precursors therefore turn out to be more speculative than expected.  相似文献   

12.
Damage to the top of coal seams, caused by incorrect blast stand-off distances, results in coal losses of up to 10–15% to the Australian open cut coal mining operations. This is a serious issue to be addressed. Here we propose to use a new forward-looking imaging technique based on the borehole radar technology to predict the coal seam top in real time while drilling blast holes. This is achieved by coupling the conventional borehole radar waves on to a steel drill rod to induce a guided wave along the axial drill rod. The drill rod ahead of the borehole radar behaves as a forward-looking antenna for the guided waves. Both numerical modelling and field trials simulating a drill rod as an antenna are used to investigate the feasibility of the proposed technique for prediction of the coal top under typical open cut environments. Numerical modelling demonstrated that conductivity of the overburden is the most important factor affecting our ability to see coal seams ahead of the drill bit, the guided borehole radar waves could be used for top coal prediction and a theoretical prediction error less than 10 cm and a forward-looking capability of 4–6 m can be achieved. Field trials at Australian open cut coal mines also demonstrated that guided borehole radar waves can be observed and used for prediction of coal top ahead of drill bit during blast-hole drilling in resistive, open cut environments (the average resistivity should be higher than 75 Ωm).  相似文献   

13.
钻孔耦合对体应变观测的影响分析   总被引:4,自引:0,他引:4  
利用三层厚壁筒组合模型,给出不同类型体应变的相互转换关系,分析模型参数变化对3类体应变仪观测的影响。通过对全国60多个台站的体应变观测资料分析,发现钻孔的气压系数与潮汐因子无简单对应关系。利用固体潮标定不同台站的体应变到统一系统的体应变,结果表明,多数台站存在体应变潮汐因子观测值比理论值明显偏小现象,推测可能与钻孔存在非完全耦合有关。  相似文献   

14.
Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.  相似文献   

15.
采用偏心状态下柱状成层各向异性(横向各向同性)介质中并矢Green函数的解析表达式高效模拟多分量感应测井仪器在井眼中偏心时的响应.为提高精度,在模拟时考虑到了金属心轴、绝缘保护层的存在以及各分量线圈系的具体形状.数值模拟结果表明,当井眼内钻井液电导率相对较高、地层电导率相对较低时,偏心对仪器响应的影响较大,尤其是对短线圈距线圈系的影响更为明显,必须进行偏心效应校正.当钻井液电导率相对较低时,偏心对线圈系响应的影响可忽略不计.对位于相对低电导率井眼中的线圈系而言仪器方位角的影响可忽略不计,而当线圈系位于相对高电导率井眼中时仪器方位角的影响极为明显.当仪器偏心率较小时线圈系的响应随仪器方位角的变化较小,仪器偏心率越大线圈系的响应随仪器方位角的变化越明显.  相似文献   

16.
井中磁源瞬变电磁响应特征研究   总被引:6,自引:1,他引:5       下载免费PDF全文
井中瞬变电磁波勘探是一个全空间地球物理场问题.采用Gaver-Stehfest逆拉氏变换方法,正演计算了瞬变信号激励下接收线圈上的电磁场响应.分析了包含井眼泥浆、套管、水泥环和地层的轴对称多层介质模型的电磁场响应特征,考察了各层介质参数对井中瞬变电磁响应的影响.不同电导率井眼泥浆的电磁场响应衰减曲线表明,井眼泥浆电导率...  相似文献   

17.
Geophysical surveys and chemical analyses on cores were carried out in three Ontario peatlands, from which we have gained a better understanding of the peat properties that control the geophysical responses. The electrical conductivity depends linearly on the concentration of total dissolved solids in the peat pore waters and the pore waters in turn bear the ionic signatures of the underlying mineral sediments. The ionic concentration, and thus the electrical conductivity, increase linearly from the surface to basement. The average bulk electrical conductivity of peatlands at Ellice Marsh, near Stratford, and at Wally Creek Area Forest Drainage Project, near Cochrane, are of the order of 25 mS/m. The Mer Bleue peatland, near Ottawa, has extremely high electrical conductivity, reaching levels of up to 380 mS/m near the base of the peat. The Mer Bleue peatland water has correspondingly high values of total dissolved solids, which originate from the underlying Champlain Sea glaciomarine clays. The dielectric permittivity in peats is largely controlled by the bulk water content. Ground penetrating radar can detect changes in water content greater than 3%, occurring within a depth interval less than 15 cm. The principal peatland interfaces detected are the near-surface aerobic to anaerobic transition and the peat to mineral basement contact. The potential for the successful detection of the basement contact using the radar can be predicted using the radar instrument specifications, estimates of the peatland depth, and either the bulk peat or the peat pore water electrical conductivities. Predicted depths of penetration of up to 10 m for Ellice Marsh and Wally Creek exceed the observed depths of 1 to 2 m. At Mer Bleue, on the other hand, we observe that, as predicted, a 100 MHz signal will penetrate to the base of a 2 m thick peat but a 200 MHz signal will not.  相似文献   

18.
Vidstrand P 《Ground water》2001,39(3):401-407
A hydraulic field test program was performed at a hard rock laboratory (Asp? HRL) on the Swedish east coast to test upscaling theories. The test program investigated the rock volume around a borehole located at a depth of approximately 340 m below sea level. Hydraulic packer tests were performed at various scales, from 2 m to the entire borehole length of 296 m. From this set of data the predictive ability of different upscaling methods could be evaluated. The comparison of the evaluated "true" field scale hydraulic conductivity with the upscaled hydraulic conductivity yielded that the majority of the upscaling methods tested in this paper predict the large scale values with significant accuracy. However, the ability to predict rapidly decreases when the variance of the natural logarithm of hydraulic conductivity of the subsamples is larger than one. Such a variance is consistently found in the crystalline rocks at the tested site at the 2 m scale. However, at scales of 10 m and larger, a variance larger than one is uncommon. Therefore, it is concluded that there exists a smallest possible scale for use of hydraulic pumping test results for estimating the effective hydraulic conductivity at scales typical for regional flow.  相似文献   

19.
Calibration of base flow separation methods with streamflow conductivity   总被引:1,自引:0,他引:1  
The conductivity mass-balance (CMB) method can be used to calibrate analytical base flow separation methods. The principal CMB assumptions are base flow conductivity is equal to streamflow conductivity at lowest flows, runoff conductivity is equal to streamflow conductivity at highest flows, and base flow and runoff conductivities are assumed to be constants over the period of record. To test the CMB assumptions, fluid conductivities of ground water, surface runoff, and streamflow were measured during wet and dry conditions in a 12-km(2) stream basin. Ground water conductivities at wells varied an average of 6% from dry to wet conditions, while stream conductivities varied 58%. Shallow ground water conductivity varied significantly with distance from the stream, with lowest conductivities of 87 microS/cm near the divide, a maximum of 520 microS/cm 59 m from the stream, and 215 microS/cm 22 m from the stream. Runoff conductivities measured in three rain events remained nearly constant, with lower conductivities of 35 microS/cm near the divide and 50 microS/cm near the stream. The CMB method was applied to the records from 10 USGS stream-gauging stations in Texas, Kentucky, Georgia, and Florida to calibrate the USGS base flow separation technique, HYSEP, by varying the time parameter 2N*. There is a statistically significant relationship between basin areas and calibrated values of 2N*, expressed as N = 0.46A(0.44), with N in days and A in km(2). The widely accepted relationship N = 0.83A(0.2) is not valid for these basins. Other analytic methods can also be calibrated with the CMB method.  相似文献   

20.
电性各向异性地层频率域电磁响应模拟   总被引:17,自引:3,他引:14       下载免费PDF全文
在现有计算机内存和运算速度条件下,电性各向异性地层中频率域电磁响应的数值模拟是一个难点. 为探索各向异性介质模型电磁响应的有效算法,同时为进一步研究各向异性地层测量响应的校正方法奠定基础,从Maxwell电磁响应方程出发,使用由三个彼此垂直的发射线圈和三个彼此垂直的接收线圈组成的线圈结构模型,应用交错网格有限差分法推导了三维频率域电磁响应的差分计算格式,采用预条件双共轭梯度法对所形成的复系数矩阵进行了迭代求解,从而得到电性各向异性地层模型下的线圈测量响应. 应用这些方法进行了多种条件下电磁响应的计算,计算结果表明,所形成的计算方法是准确可靠的,预条件双共轭梯度法的运算效率也较高;电性各向异性地层的电磁响应与地层倾角(或井斜角)、仪器测量方位、地层的水平电阻率和垂直电阻率有关;根据水平方向磁场强度分量可以确定地层界面;在电磁响应计算过程中,背景电导率的取值要尽量接近整个计算区域的平均电导率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号