首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wuhan University's ocean state measuring and analyzing radar (OSMAR2000), working at around 7.5 MHz in the low region of the HF band with a 120-m-long linear receiving antenna array, can measure ocean surface current at ranges of up to 200 km. An ocean surface current algorithm based on direction finding (DF) using the multiple signal classification (MUSIC) method is developed for the OSMAR2000 radar. This paper describes the OSMAR2000 ocean surface current algorithm based on MUSIC and the validation experiments in the East China Sea. The results of the ocean surface current measurements demonstrate that the OSMAR2000 ocean surface current algorithm based on MUSIC is feasible for the long range of ocean surface current mapping with a sufficient bearing resolution.  相似文献   

2.
An overview of matched field methods in ocean acoustics   总被引:4,自引:0,他引:4  
A short historical overview of matched-field processing (MFP) is followed by background material in both ocean acoustics and array processing needed for MFP. Specific algorithms involving both quadratic and adaptive methods are then introduced. The results of mismatch studies and several algorithms designed to be relatively robust against mismatch are discussed. The use of simulated MFP for range, depth and bearing location is examined, using data from a towed array that has been tilted to produce an effective vertical aperture. Several experiments using MFP are reviewed. One successfully demonstrated MFP at megameter ranges; this has important consequences for experiments in global tomography. Some unique applications of MFP, including how it can exploit ocean inhomogeneities and make tomographic measurements of environmental parameters, are considered  相似文献   

3.
This paper focuses on the validation of remotely sensed ocean surface currents from SeaSonde-type high-frequency (HF) radar systems. Hourly observations during the period July 22, 2003 through September 9, 2003 are used from four separate radar sites deployed around the shores of Monterey Bay, CA. Calibration of direction-finding techniques is addressed through the comparisons of results obtained using measured and ideal (i.e., perfect) antenna patterns. Radial currents are compared with observations from a moored current meter and from 16 surface drifter trajectories. In addition, four overwater baselines are used for radar-to-radar comparisons. Use of measured antenna patterns improves system performance in almost all cases. Antenna-pattern measurements repeated one year later at three of the four radar locations exhibit only minor changes indicating that pattern distortions are stable. Calibrated results show root-mean-square (rms) radial velocity differences in the range of 9.8-13.0 cm/s, which suggest radar observation error levels in the range of 6.9-9.2 cm/s. In most cases, clear evidence of bearing errors can be seen, which range up to 30deg for uncalibrated radar-derived radial currents and up to 15deg for currents obtained using measured antenna patterns. Bearing errors are not, however, constant with angle. The results recommend use of measured antenna patterns in all SeaSonde-type applications. They also recommend an expanded simulation effort to better describe the effects of antenna-pattern distortions on bearing determination under a variety of ocean conditions  相似文献   

4.
Measurement of ocean surface winds using synthetic aperture radars   总被引:4,自引:0,他引:4  
A methodology for retrieving high-resolution ocean surface wind fields from satellite-borne synthetic aperture radar (SAR) data is introduced and validated. The algorithms developed are suited for ocean SAR data, which were acquired at the C band of either vertical (VV) or horizontal (HH) polarization in transmission and reception. Wind directions are extracted from wind-induced streaks that are visible in SAR images of the ocean at horizontal scales greater than 200 m. These wind streaks are very well aligned with the mean surface wind direction. To extract the orientation of these streaks, two algorithms are introduced, which are applied either in the spatial or spectral domain. Ocean surface wind speeds are derived from the normalized radar cross section (NRCS) and image geometry of the calibrated SAR images, together with the local SAR-retrieved wind direction. Therefore, several C-band models (CMOD IFR2, CMOD4, and CMODS) are available, which were developed for VV polarization, and have to be extended for HH polarization. To compare the different algorithms and C-band models as well as demonstrate their applicability, SAR-retrieved wind fields are compared to numerical-model results considering advanced SAR (ASAR) data from Environmental Satellite (ENVISAT), a European satellite.  相似文献   

5.
Ocean surface currents can be estimated, over a large coastal area, by utilizing the backscatter of high frequency (HF) radar waves from ocean gravity waves. Although the overall backscatter mechanism is complicated, the surface current information is contained within the spectral characteristics of two dominant Bragg components. The accuracy of the current estimate, following the usual FFT-based spectral estimate, is limited by the frequency resolution of the FFT and the time-varying characteristics of the Bragg components. This paper describes a high resolution parametric estimation of the ocean currents based on a recently proposed technique for analyzing time-varying signals. This technique, together with a time-domain ocean clutter model, allows all the Bragg signal information to be extracted from the two dominant eigenvalues and eigenvectors of a matrix constructed from the radar data. Using signals from an operational coastal surveillance radar, current estimates made using this technique are compared with those estimated by the conventional FFT-based method  相似文献   

6.
An algorithm that would extend the capabilities of a four-element square array known as the Coastal Oceans Dynamics Applications Radar (CODAR) to include the yielding of directional wave-height spectra from backscattered radiation is addressed. General expressions for the first- and second-order broadbeam radar cross-sections of the ocean surface are applied to the array. A Fourier-basis-function approach allows the broadbeam cross-sections to be written as a system of integral equations. The second-order radar return involves a double integral whose integrand contains nonlinear combinations of the unknowns, namely, the Fourier coefficients of the ocean wave directional spectrum. The first-order portion of the radar spectrum is used to linearize this integral. The matrix system then formulated is solved using a singular value decomposition (SVD) approach, and the resulting ocean spectral coefficients are used to give the directional spectrum. Test results for the algorithm are reported and discussed  相似文献   

7.
High-frequency (HF) radar systems are remote sensing tools that can be used to measure oceanographic parameters. Problems can occur when using the conventional periodogram (PG) method for computing power spectral estimates from backscattered radar signals. Temporal and spatial inhomogeneities within the radar measurement region can cause distortion in the spectra. This paper describes an instantaneous-frequency (IF) filtering technique that has been developed to measure the first-order modulation contained within the radar signal. Successful removal of this modulation is shown to yield an increased quality and quantity of ocean measurements  相似文献   

8.
Nautical radar and scalar buoy measurements of ocean wind generated waves have been analysed to compare the spectral parameters estimated from both sensors. The time series of different sea-state parameters and the differences and ratios of the values obtained from radar and buoy data using different analysis methods are compared. It has been observed that main differences between the sea-state parameters derived by using measurements obtained from both sensors result both from device characteristics and from the method of spectral estimation. In particular, it is shown that the Nyquist frequency has an important effect on the value of the sea-state parameters depending on spectral moments of order higher than zero.  相似文献   

9.
Simulation-based evaluations of HF radar ocean current algorithms   总被引:1,自引:0,他引:1  
A computer simulation is used to analyze errors in high-frequency (HF) radar ocean surface current measurements. Two pointing algorithms used for current extraction, a direction finding approach using MUltiple SIgnal Characterization (MUSIC) developed by Schmidt (1986), and conventional beam forming, are compared in terms of the effect of variations in sea state parameters on current measurement error. The radar system parameters used in the simulation were taken from the University of Michigan's multi-frequency coastal radar (MCR), which operates on four frequencies from 4.8 to 21.8 MHz and employs an eight-element linear phased array for its receive antenna. Results show MUSIC direction finding to be applicable to phased array systems and to have a better sensitivity to sharp current features, but larger random error than traditional beam forming methods. Also, for cases where beam forming errors are dominated by beam width or low signal to noise ratio, results show MUSIC to be a viable alternative to beam forming  相似文献   

10.
During a March 1977 experiment, four systems were used to provide wave-direction information offshore of Mission Beach, CA: a synthetic aperature radar (SAR) carried aboard a NASA CV990 aircraft, a coastal imaging radar, a pressure-gauge array offshore, and aerial photography aboard two aircraft. The coastal radar, aerial photographs, and SAR provided wave images. From the coastal radar images and the aerial photographs, the direction and length of the principal wavetrains were measured by a manual analysis. The SAR images were also processed using an FFT to give two-dimensional wave spectra. The array at the Naval Ocean Systems Center (NOSC) tower was used to provide directional wave spectra. Scatter diagrams are presented, which intercompare the measurements from these four systems. In addition, radar image spectral information is compared with the array spectra. The intercomparison of the data from these four systems shows good agreement among the imaging systems. Between the imaging systems and the pressure array there is agreement for the most prominent wavetrains and disagreement for several cases where multiple wavetrains from different directions but with similar periods are present.  相似文献   

11.
A hidden Markov model (HMM) technique for the estimation of the shape of a towed array is presented. It is assumed that there is a far-field source radiating sound containing possibly weak spectral lines. The technique uses either the Fourier coefficients at a given frequency computed from a single time block or the maximal eigenvector of a sample spectral covariance matrix. The technique is illustrated using several simulations. The results of these simulations indicate that the HMM technique yields shape and bearing estimates more accurate than those provided by a maximum-likelihood array shape estimation technique  相似文献   

12.
13.
Methods for joint ocean-channel estimation and data recovery are derived using an optimal, maximum likelihood (ML) estimation criterion. The resulting ML problems may be complex, thus iterative algorithms are used, e.g. the expectation-maximization (EM) algorithm. The different methods correspond to different assumptions about the ocean channel. The theoretical derivation of these methods as well as preliminary results on simulated ocean data experiments are presented  相似文献   

14.
In this paper, we describe a high-frequency (HF) radar capable of multifrequency operation over the HF band for dual-use application to ship classification and mapping ocean current shear and vector winds. The radar is based on a digital transceiver peripheral component interconnect (PCI) card family that supports antenna arrays of four to 32 elements with a single computer, with larger arrays possible using multiple computers and receiver cards. The radar makes use of broadband loop antennas for receive elements, and a number of different possibilities for transmit antennas, depending on the operating bandwidth desired. An option exists in the choice of monostatic or multistatic operation, the latter providing the ability to use several transmit sites, with all radar echo signal reception and processing conducted at a single master receiver site. As applications for such a multifrequency radar capability, we show measurement and modeling examples of multiple frequency HF radar cross section (RCS) of ships as an approach to ship target classification. Results of using 32 radar frequencies to measure the fine structure in ocean current vertical shear are also shown, providing evidence of one edge of a 1-3-m deep uniform flow masked at the surface by wind-driven current shear in a different direction. Other applications of current-shear measurements, such as vector wind mapping and volumetric current estimation in coastal waters, are also discussed  相似文献   

15.
The algorithms of extracting chlorophyll-a(Chl-a) concentration have been established for Chinese moderate resolution imaging spectrometer(CMODIS) mounted on Shenzhou-3 spaceship launched on 25 March 2002.The CMODIS is an ocean color sensor with 30 visible channels and 4 infrared channels,much different from other ocean color satellites and needs new algorithms to process data.Three models of Chl-a concentration were established based on Chl-a data retrieved from sea-viewing wide field-of-view sensor(SeaWiFS),with the average relative errors of 26.6%,24%.0% and 33.5%,respectively.This practical and economic approach can be used for developing the algorithms of Chinese ocean color and temperature sensor(COCTS) on the satellite Haiyang-1 to derive the Chl-a concentration concentration distribution.The applicability of the algorithms was analyzed using some in situ measurements.Suspended sediment is the main factor influencing the accuracy of the spectral ratio algorithms of Chl-a concentration.The algorithms are suitable to using in the regions where suspended sediment concentrations(SSC) are less than 5 g/m3 under the condition of relative error of Chl-a concentration retrieval within 35%.High concentration of suspended sediment leads to the overestimate remote sensing retrieval of concentration of Chl-a,while low-middle SSCs lead to the low Chl-a concentration values using the spectral ratio algorithms.Since the accuracy of Chl-a concentration by the spectral ratio algorithms is limited to waters of Case 2,it is necessary to develop semi-analytical models to improve the performance of satellite ocean color remote sensing in turbid coastal waters.  相似文献   

16.
A Spectral Approach for Determining Altimeter Wind Speed Model Functions   总被引:9,自引:0,他引:9  
We propose a new analytical algorithm for the estimation of wind speeds from altimeter data using the mean square slope of the ocean surface, which is obtained by integration of a widely accepted wind-wave spectrum including the gravity-capillary wave range. It indicates that the normalized radar cross section depends not only on the wind speed but also on the wave age. The wave state effect on the altimeter radar return becomes remarkable with increasing wind speed and cannot be neglected at high wind speeds. A relationship between wave age and nondimensional wave height based on buoy observational data is applied to compute the wave age using the significant wave height of ocean waves, which could be simultaneously obtained from altimeter data. Comparison with actual data shows that this new algorithm produces more reliable wind speeds than do empirical algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±2~(1/2) and ±1(2~(1/2)) times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar.  相似文献   

19.
便携式高频地波雷达台湾海峡浪高观测   总被引:2,自引:1,他引:1  
As an important equipment for sea state remote sensing, high frequency surface wave radar(HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-order continuum to that of the Bragg spectral region(RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak(RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing radar, type S(OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error(RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.  相似文献   

20.
FY-3A/MERSI, ocean color algorithm, products and demonstrative applications   总被引:1,自引:0,他引:1  
A medium resolution spectral imager (MERSI) on-board the first spacecraft of the second generation of China’s polar-orbit meteorological satellites FY-3A, is a MODIS-like sensor with 20 bands covering visible to thermal infrared spectral region. FY-3A/MERSI is capable of making continuous global observations, and ocean color application is one of its main targets. The objective is to provide information about the ocean color products of FY-3A/MERSI, including sensor calibration, ocean color algorithms, ocean color products validation and applications. Although there is a visible on-board calibration device, it cannot realize the on-board absolute radiometric calibration in the reflective solar bands. A multisite vicarious calibration method is developed, and used for monitoring the in-flight response change and providing post-launch calibration coefficients updating. FY-3A/MERSI ocean color products consist of the water-leaving reflectance retrieved from an atmospheric correction algorithm, a chlorophyll a concentration (CHL1) and a pigment concentration (PIG1) from global empirical models, the chlorophyll a concentration (CHL2), a total suspended mater concentration (TSM) and the absorption coefficient of CDOM and NAP (YS443) from China’s regional empirical models. The atmospheric correction algorithm based on lookup tables and ocean color components concentration estimation models are described. By comparison with in situ data, the FY-3A/MERSI ocean color products have been validated and preliminary results are presented. Some successful ocean color applications such as algae bloom monitoring and coastal suspended sediment variation have demonstrated the usefulness of FY-3A/MERSI ocean color products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号