首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Volcanic rocks from six of the currently or recently active volcances of the Mariana Island are show little variation in major element abundances. SiO2 content averages 51.5 wt.%. The flows are high in Al2O (mean 17.7 wt.%) and Fe oxides (mean 10.1 wt.% calculated as FeO only), and moderate in MgO content (mean 4.7 wt.%), Na2O (mean 2.7 wt.%), and K2O (mean 0.7 wt.%). Only the rocks from Farallon de Pajaros, the northernmost of the Mariana Islands, deviate slightly from the average of the analyses. Three analyses from this island are slightly higher in SiO2 (about 54 wt.%) and Al2O3, and are lower in total Fe oxides and MgO. According to preferred classification, the lavas of the Mariana Islands can be termed mela-andesites, high-alumina basalts, or calc-alkaline (orogenic) basalts. The K2O values (mean 0.7 wt.%) obtained from lavas of the Mariana Islands are significantly higher than the K2O values (about 0.33 wt.%) from volcanics of the Izu chain to the north. Inasmuch as the substantial scatter in location of earthquake foci beneath both arcs prevents accurate delineation of the upper boundary of the Benioff zone, it presently cannot be determined whether this discrepancy in K2O values reflects a difference in depth from the volcanic are to the dipping seismic zone or relates to other phenomena. The older volcanic islands within the Mariana-Bonin island chain apparently defined an island arc system during Eocene to Miocene time. This indicates that the present plane of convergence between the Pacific plate and the Philippine Sea plate has defined the convergence between these plates since Eocene time.  相似文献   

2.
The Hilina Formation comprises the oldest sequence of lava flows and tuffs exposed on Kilauea Volcano. These rocks are only exposed in kipukas in younger Puna Formation lavas along cliffs on the south flank of Kilauea Volcano. Locally, tuffs and flows of the Pahala Formation separate the underlying Hilina Formation rocks rom the overlying Puna Formation rocks. Charcoal collected from the base of the Pahala Formation yielded a C14 age of 22.800±340 years B.P. which defines a minimum age for the Hilina Formation. Hilina Formation lavas crop out over a wide region and probably originated from the summit area and from both rift zones. The Hilina Formation contains both olivine-controlled and differentiated lavas (using the terminology ofWright, 1971). The olivine-controlled lavas of the Hilina Formation are distinguishable mineralogically and geochemically from younger olivine-controlled Kilauea lavas. The younger lavas generally contain discrete low-calcium pyroxene grains. greater glass contents, higher K2O/P2O5 ratios and lower total iron contents. Similar geochemical trends prevail for Manuna Loa lavas, and may typify the early lavas of Hawaiian shield volcanoes. Despite these similarities, the Hilina Formation (and all Kilauea) lavas have higher TiO2 and CaO, and lower SiO2 and Al2O3 contents than Mauna Loa Lavas. These differences have existed for over 30,000 years. Therefore, it is unlikely that the older lavas of Kilauea are compositionally similar to recent Mauna Loa lavas as was previously suggested. K2O, TiO2, Na2 and Zr contents of lavas from a stratigraphic sequence of Hilina Formation lavas are variable. These variations may be utilized to subdivide the sequence into geochemical groups. These groups are not magma batches. Rather, they represent lavas from batches whose compositions may have been modified by crystal fractionation and magma mixing.  相似文献   

3.
Greenrocks are very common in the Tananao Schist of eastern Taiwan where the known fossils are of Permian in age. Fourty-four greenrock samples were chemically analysed and their magma types studied. The chemical composition of the greenrocks have marked variation common in volcanic rock series. The greater parts of the greenrocks belong to basalt and a smaller portion to basaltic andesite (SiO2 53 %–58 %). They are probably isochemical with their original igneous rocks except for volatile components. No striking Fe-enrichment exists in a MgO-ΣFeO-(Na2O=K2O) diagram. Based on (Na2O=K2O)-Al2O3-SiO2 diagrams afterKuno (1960), the parent magma of the rocks mostly belong to the high-alumina basalt series and only a few to alkali olivine basalt series. The high-alumina basalt can be looked upon as having an incipient trend for the calc-alkaline or the hypersthene series ofKuno (1959). The average K/Rb ratio of 460, the average TiO2 percentage of 1.5 %, and low K2O of around 0.5 % seem to warrant a conclusion that the basaltic rocks were poured out in the upper Paleozoic eugeosyncline on an embryonic continental crust. Considering the rock association of amphibolite plus serpentine (dismembered ophiolite), meta-graywacke, metachert, crystalline limestone, metaarkose, and metabasites in the Tananao Schist, the most probable site for the eugeosyncline may been an extensional trough near the fragmented paleo-Asiatic margin.  相似文献   

4.
Coarse-grained rocks found as veinlets, veins and dykes in the horizontal basaltic formation (Series I) of the Islands of Lanzarote and Fuerteventura (Canarian Archipelago) have been studied petrographycally and chemically. The term « pegmatitoides » as given byLacroix (1928, 1929) has been adopted for these coarse-grained rocks. Petrographycally, they are alkali gabbros, ranging from theralites to essexites and even to nepheline monzonitic types. The degrce of crystallization and the textural relationships vary within wide limits. Basalts that contain pegmatitoides are olivine basalts or even more basic types, such as oceanites. Chemical study of pegmatitoides with relation to their host basalts shows that pegmatitoides are richer in Si2O, Al2O3, Na2O, K2O and poorer in CaO and MgO than their hosts-basalts. Hypotheses are presented in this study as to the genesis of these pegmatitoides.  相似文献   

5.
Three periods of volcanic activity connected with tectonic events form the geological history of the Valley of Mexico (Mooser 1963, 1969). An igneous rock suite from rhyodacites to andesites (but lacking rhyolites and basalts) can be observed in each period. During the Tertiary epochs — in the Oligo-Miocene and Upper Miocene-Pliocene — we have a more dacitic volcanism, in the Quaternary epoch a more andesitic volcanism. This result was verified by calculating the average of all available and stratigraphically datable chemical analyses byGunn &Mooser (1971) andNegendank (1972). Using the average chemical composition of the Oligo-Miocene, Upper Miocene-Pliocene and Quaternary products the equivalent igneous rocks were computed using theRittmann-norms in theStreckeisen-Q-A-P-F double triangle with the following result (names in parenthesis are those using the classification ofMiddlemost (1973): Quaternary : quartz-latite-andesite (andesite) Upper Miocene-Pliocene : leuco-quartz-latite-andesite (high lime dacite) Oligo-Miocene : leuco-quartz-latite-andesite (high lime dacite) The equal average composition of the two groups of Tertiary volcanic rocks seems to support the theory of a uniform primary andesite magma apart from which of the two possible theories of petrogenesis one favors. The calculated average trace element abundances show high Cr- and Ni-values which suggests that mantle material was involved if we consider the Tertiary products as partial melting products of the lower crust. A more elegant hypothesis seems to be the model ofGunn &Mooser (1971), who consider these volcanic rocks as partial melting products of oceanic tholeiites or their high pressure derivatives in the sense ofRaleigh &Lee (1969).  相似文献   

6.
A 250-μm fragment in the Luna 20 fines has a very fine-grained “igneous” texture and has the composition (wt.%): SiO2, 41.1; TiO2, 0.35; Al2O3, 27.2; Cr2O3, 0.14; FeO, 4.2; MnO, 0.06; MgO, 8.5; CaO, 17.8; Na2O, 0.05; and K2O < 0.02. It contains ~ 65% plagioclase An99–100, ~ 15% olivine Fo90, ~ 2% Mg-Al spinel and the remainder an unusual interstitial phase with composition SiO2, 34.8; TiO2, 1.78; Al2O3, 18.3; Cr2O3, 0.04; FeO, 14.1; MnO, 0.22; MgO, 5.0; CaO, 24.1; Na2O, 0.34; K2O < 0.02. This fragment probably represents a portion of a normal highland rock (anorthositic norite) which was heated to a very high temperature by impact, lost volatiles including SiO2, and then partially crystallized. The observed phases and their inferred crystallization sequence are consistent with experimental results in the system CaOMgOAl2O3SiO2 (Schairer and Yoder, 1969), assuming the unusual phase to be a residual glass. This type of internal fractionation, leading to silica depletion in the residuum, is different from that normally observed in lunar rocks and is attributed to slightly lower bulk SiO2 resulting from vapor fractionation due to impact (which also results in lower Na2O and other volatiles). Because differentiation of the type shown by this fragment is rare in lunar materials, we infer that such major-element vapor fractionation is uncommon on the surface of the moon. The experimental CaOMgOAl2O3SiO2 phase relations also have a bearing on the lunar model proposed by D.L. Anderson in 1973: his “refractory” original lunar composition would differentiate to produce silica deficient liquids, like the unusual phase in our fragment, rather than the normal lunar crustal rocks.  相似文献   

7.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   

8.
Though in two different geodynamic sites, the Isles of Fayal (Azores, North Atlantic) and Rapa (Australes, Pacific) show large similitudes. The two series differentiated under dry conditions by a process of crystal fractionation with low oxygen fugacity. Olivine is present in both series and evolves from Fo83 to Fo5 (Rapa) and from Fo77 to Fo22 (Fayal). The two series present some features of the tholeiitic series, even though their high contents in incompatible elements (K2O, TiO2, etc.) and normative Ne (0.30 in basalt) would assimilate them to alkaline series. These apparent conflicting datas are explained by an anhydrous melting (<15%) under high pressure (>15kb) of an undepleted pyrolitic mantle, according to a recent proposal byJaques andGreen (1980).  相似文献   

9.
Preliminary data on major elements, Cs, Ba, Rb, Pb, Sr, REE, Y, Th, U, Zr, Ht, Sn, Nb, W, Mo, Cr, V, Sc, Ni, Co and Cu contents for eight samples coming from the Upper Cretaceous volcanic belt of the Pontic Chain (Northern Turkey) are reported. SiO, versus K2O relationship shows that the analyzed samples belong to the calc-alkaline and shoshonite series. The calc-alkaline rocks appear to represent two distinct magma types one close in composition to typical island are calc-alkaline magmas and one with high incompatible elements concentration and tractionated heavy REE patterns which suggest a genesis by partial melting at high pressure with a garnet bearing residue. Shoshonitic rocks show Na2O/K2O close to one, high incompatible elements concentration, and TiO2%. Al2O3%, Ni and Co contents, Ni/Co and V/Ni ratios and REE patterns similar to typical island are andesites which suggest for these rocks similar genetical processes as the island are calc-alkaline magmas.  相似文献   

10.
Some recent calc-alkaline andesites and dacites from southern and central Martinique contain basic xenoliths belonging to two main petrographic types:
  • The most frequent one has a hyalodoleritic texture (« H type ») with hornblende + plagioclase + Fe-Ti oxides, set in an abundant glassy and vacuolar groundmass.
  • The other one exhibits a typical porphyritic basaltic texture (« B type ») and mineralogy (olivine + plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides and scarce, or absent hornblende).
  • Gradual textural and mineralogical transitions occur between these two types (« I type ») with the progressive development of hornblende at the expense of olivine and pyroxenes. Mineralogical and chemical studies show no primary compositional correlations between the basaltic xenoliths and their host lavas, thus demonstrating that the former are not cognate inclusions; they are remnants of basaltic liquids intruded into andesitic to dacitic magma chambers. This interpretation is strengthened by the typical calc-alkaline basaltic composition of the xenoliths, whatever their petrographic type (« H », « I » or « B »). The intrusion of partly liquid, hot basaltic magma into colder water-saturated andesitic to dacitic bodies leads to drastic changes in physical conditions. The two components; the basaltic xenoliths are quenched and homogeneized with their host lavas with respect to To;fO2 andpH2O conditions. « H type » xenoliths represent original mostly liquid basalts in which such physical changes lead to the formation of hornblende and the development of a vacuolar and hyalodoleritic texture. The temperature increase of the acid magma depends on the amount of the intruding basalt and on the thermal contrast between the two components. The textural diversity which characterizes the xenoliths reflects the cooling rate of the basaltic fragments and/or their position relative to the basaltic bodies (chilled margins or inner, more crystallized, portions). In addition to physical equilibration (T, fO2) between the magmas, mixing involves:
  • mechanical transfer of phenocrysts from one component to another, in both directions;
  • volatile transfer to the basaltic xenoliths, with chemical exchanges.
  • It is here demonstrated that a short period of time (some ten hours to a few days) separates the mixing event from the eruption, outlining the importance of magma mixing in the triggering of eruption. The common occurrence of basaltic xenoliths (generally of « H » type) in calc-alkaline lavas is emphasized, showing that this mechanism is of first importance in calc-alkaline magma petrogenesis.  相似文献   

    11.
    The conductivity of four igneous rocks with, 49, 65, 77, and 84% SiO2 was measured as a function of temperature in the interval from 20° to 1280°C; measurements were made in a vacuum of 10?3 torr. No simple relationships were found between conductivity and SiO2 content or versus major element groupings such as Na2O=K2O=CaO and TiO2=Cr2O3=Al2O3=Fe2O3=FeO. An analytical expression was obtained between conductivity and the albite-quartz ratio, valid for temperatures between 300° and 1200°C. It was necessary to compute the CIPW norm in order to obtain the albite and quartz percentages. The onset of melting apparently occurred between 600° and 700°C. Petrography performed on two samples after cooling showed 70 and 85% partial melting. Three conduction regions were identified: 1) below 300°C, 2) between 300°C and 600°C, and 3) above 600°C. Different activation energies obtained for the heating and cooling intervals confirm that the sample undergoes textural changes in the heating-cooling cycle. Activation energy increments of 0.1 and 0.2 eV per decade of albite-quartz ratio were obtained.  相似文献   

    12.
    The Miocene sequence of felsic extrusive rocks of about 1000 m total thickness on Gran Canaria is divided into three units:
    1. A lower unit of trachytic rhyolites (lavas, composite flows, ignimbrites) characterized by a phenocryst assemblage of anorthoclase (Or15–20, wt%), clinopyroxene, hypersthene (amphibole substituted for both in ignimbrites), and Fe/Ti-oxides. The commonest groundmass minerals are anorthoclase and alkali-amphibole, with minor quartz and aegirine.
    2. A middle unit of comenditic and pantelleritic ignimbrites characterized by anorthoclase (Or20–32) and amphibole. Phenocryst minerals restricted to individual flows are Fe/Ti-oxides (several comendites), clinopyroxene, biotite, and sphene. The commonest groundmass minerals are anorthoclase and Tiaegirine, with lesser katophorite, arfvedsonite and quartz.
    3. An upper unit of trachvtic and phonolitic ignimbites and lava flows (normative ne rarety exceeding 10%) with nepheline phonolite lava flows becoming increasingly abundant upwards. The ignimbrites have mostly anorthoclase (Or30-04), and biotite, with rarer Fe/Ti-oxides, hornblende, and clinopyroxene. The commonest groundmass minerals are anorthoclase, aegirine, and alkali-amphiboles, and in some flows nepheline.
    The change from Na-rich to K-rich anorthoclase upwards in the sequence supports the conclusion, based on over 50 new stratigraphically controlled chemical analyses that the Na2O/K2O-ratio decreases within the sequence. possibly as a result of crystal iractionation processes and this effect is independent of probable loss of Na on post-eruptive crystallization. While hydroxyl-bearing phenocryst minerals are absent from all rocks called lava in the field, they are ubiquitous in the ignimbrites, indicating the importance of Pu2o in the generation of suspension-type cruptions. Compositional gradients must have been particularly pronounced in the small magma chambers that existed beneath Gran Canaria, resulting in a wide range of compositionally zoned or mixed deposits.  相似文献   

    13.
    Boninite is an unusual, plagioclase-free magnesian andesite, occurring as vesicular pillow lavas and hyaloclastites, accompanied by andesites and dacites in Chichi-jima, Bonin Islands. The Bonin Islands belong to the Izu-Mariana arc and consist of dominant volcanic rocks and subordinate sedimentary rocks of late Oligocene-early Miocene age. The chemistry of boninite is characterized by high contents of MgO. Cr and Ni similar to primitive basalts, but apparently in ill accord with its relatively high SiO2 content of ? 55%. The relation of SiO2 to total FeO/MgO ratio indicates that boninite belongs to the cale-alkalic rock suite. The mineralogy of boninite consists of olivine (Fo87-90), orthopyroxene (En87-90), clinopyroxene (Wo38-35En37-44Fs25-21), hydrous glass and Cr-spinel, Experimental studies show that the magma of boninite composition could be in equilibrium with upper mantle peridotite at pressures less than 17 kb and temperatures of 1200–1050°C under high PH2O. It is suggested that boninite is a sea-floor quenched product (900°C) of a direct partial melt of the upper mantle. Related andesites and dacites are considered to be probably fractional crystallization products from the same magma.  相似文献   

    14.
    A brief report is made of current laboratory investigations on phase relations among olivine, pyroxene, anorthite, magnetite, tridymite, liquid and gas in the system Mg2SiO4-CaAl2Si2O8-FeO-Fe2O2-SiO2 over a wide range of oxygen partial pressures. Courses of fractional crystallization under various conditions of oxygen partial pressure are depicted using an anorthite saturation diagram. Starting with a basalt-like composition in the system, fractional crystallization at a moderate oxygen partial pressure (10 atm.) results in an andesite-like residual liquid of composition 55 SiO2, 14 iron oxide, 6 MgO, 9 CaO, 16 Al2O3 at a temperature of 1155°C. With fractional crystallization in a closed system, the end liquid approaches the composition of 45 SiO2, 38 iron oxide, 6 CaO and 11 Al2O3, at a temperature of 1050°C and oxygen partial pressure of about 10?12 atm. The andesitic final liquid in this system would be expected to further differentiate toward dacitic and rhyolitic compositions if alkalies and water were present in the system. On the basis of these studies, the derivation of liquids of andesitic, dacitic or rhyolitic composition from primary basalts by fractional crystallization seems entirely possible if the oxygen partial pressure is maintained at a moderate or high level.  相似文献   

    15.
    A mixture containing equal amounts of forsterite and grossularite by weight (Fo50Gr50) has been studied at temperatures between 750 and 1400°C under pressures ranging from 6 to 25 kbar in presence of excess water. The assemblages noted under low pressure (<8 kbar) are as follows: Diopsidess+forsteritess+monticellitess+vapor and Diopsidess+forsteritess+monticellitess+liquid+vapor. (ss denotes solid solution) Under intermediate pressures between 8 and 24 kbar following assemblages were noted in the order of increasing temperature: Diopsidess+forsteritess+spinel+vapor, Diopsidess+forsteritess+spinel+liquid+vapor, Diopsidess+forsteritess+liquid+vapor, and Forsteritess+liquid+vapor. At pressures above 24 kbar the assemblages are as follows: Diopsidess+forsteritess+garnet+vapor, Diopsidess+forsteritess+garnet+liquid+vapor, Diopsidess+forsteritess+liquid+vapor, and Forsteritess+liquid+vapor. Electron microprobe analyses of diopside and forsterite crystallized at 1050°C and 23 kbar, show that the former contains 6 to 6.5 wt % of Al2O3 as solid solution whereas the latter incorporates 1.3 wt % of monticellite in solid solution. The monticellite content of forsterite increases at low pressures at a given temperature to about 6 wt % at 1050°C and 6 kbar. The study indicates that forsteritic olivine does not coexist with pure grossularite in the studied temperature and pressure ranges, although the former is in equilibrium with pyrope-rich garnet, containing 23 mole % grossularite. The study supports the conclusion ofWerner andLuth (1973) that the solubility of monticellite in forsterite decreases with increasing pressure at a given temperature. The results of the investigation are also in agreement with the findings ofKushiro andYoder (1966), who noted that spinel peridotites found in folded belts and in alkalic basalts are produced under intermediate pressures, whereas garnet peridotite xenoliths found in kimberlite and in orogenic belts are formed at high pressures.  相似文献   

    16.
    The effect of location errors in the performance of seismicity-based forecasting methods was studied here using one particular binary forecast technique, the Pattern Informatics (PI) technique (Rundle et al., Proc Nat Acad Sci USA 99, 2514–2521, 2002; Tiampo et al., Pure Appl Geophys 159, 2429–2467, 2002). The Southern Californian dataset was used to generate a series of perturbed catalogs by adding different levels of noise to epicenter locations. The PI technique was applied to these perturbed datasets to perform retrospective forecasts that were evaluated by means of skill scores, commonly used in atmospheric sciences. These results were then compared to the effectiveness obtained from the original dataset. Isolated instances of decline of the PI performance were observed due to the nature of the skill scores themselves, but no clear trend of degradation was identified. Dependence on the total number of events in a catalog also was studied, with no systematic degradation in the performance of the PI for catalogs with events in the cases studied. These results suggest that the stability of the PI method is due to the invariance of the clustering patterns identified by the TM metric (Thirumalai and Mountain, Phys Rev A 39, 3563–3573, 1989) when applied to seismicity.  相似文献   

    17.
    Unloaded natural rock masses are known to generate seismic signals (Green et al., 2006; Hainzl et al., 2006; Husen et al., 2007; Kraft et al., 2006). Following a 1,000 m3 mass failure into the Mediterranean Sea, centimeter-wide tensile cracks were observed to have developed on top of an unstable segment of the coastal cliff. Nanoseismic monitoring techniques (Wust-Bloch and Joswig, 2006; Joswig, 2008), which function as a seismic microscope for extremely weak seismic events, were applied to verify whether brittle failure is still generated within this unconsolidated sandstone mass and to determine whether it can be detected. Sixteen days after the initial mass failure, three small-aperture sparse arrays (Seismic Navigation Systems-SNS) were deployed on top of this 40-m high shoreline cliff. This paper analyzes dozens of spiky nanoseismic (?2.2 ≥ M L ≥ ?3.4) signals recorded over one night in continuous mode (at 200 Hz) at very short slant distances (3–67 m). Waveform characterization by sonogram analysis (Joswig, 2008) shows that these spiky signals are all short in duration (>0.5 s). Most of their signal energy is concentrated in the 10–75 Hz frequency range and the waveforms display high signal similarity. The detection threshold of the data set reaches M L ?3.4 at 15 m and M L ?2.7 at 67 m. The spatial distribution of source signals shows 3-D clustering within 10 m from the cliff edge. The time distribution of M L magnitude does not display any decay pattern of M L over time. This corroborates an unusual event decay over time (modified Omori’s law), whereby an initial quiet period is followed by regained activity, which then fades again. The polarization of maximal waveform amplitude was used to estimate spatial stress distribution. The orientation of ellipses displaying maximal signal energy is consistent with that of tensile cracks observed in the field and agrees with rock mechanics predictions. The M L– surface rupture length relationship displayed by our data fits a constant-slope extrapolation of empirical data collected by Wells and Coppersmith (1994) for normal fault features at much larger scale. Signal characterization and location as well as the absence of direct anthropogenic noise sources near the monitoring site, all indicate that these nanoseismic signals are generated by brittle failure within the top section of the cliff. The atypical event decay over time that was observed suggests that the cliff material is undergoing post-collapse bulk strain accommodation. This feasibility study demonstrates the potential of nanoseismic monitoring in rapidly detecting, locating and analyzing brittle failure generated within unconsolidated material before total collapse occurs.  相似文献   

    18.
    For the purpose of modeling natural fault slip, a useful result from an experimental fault mechanics study would be a physically-based constitutive relation that well characterizes all the relevant observations. This report describes an approach for constructing such equations. Where possible the construction intends to identify or, at least, attribute physical processes and contact scale physics to the observations such that the resulting relations can be extrapolated in conditions and scale between the laboratory and the Earth. The approach is developed as an alternative but is based on Ruina (1983) and is illustrated initially by constructing a couple of relations from that study. In addition, two example constitutive relationships are constructed; these describe laboratory observations not well-modeled by Ruina’s equations: the unexpected shear-induced weakening of silica-rich rocks at high slip speed (Goldsby and Tullis, 2002) and fault strength in the brittle ductile transition zone (Shimamoto, 1986). The examples, provided as illustration, may also be useful for quantitative modeling.  相似文献   

    19.
    In this work, we provide a joint study of the stress accumulation method (SAM) (King and Bowman, 2003) and the Pattern Informatics (PI) index (Tiampo et al., 2002b). We examine the theoretical underpinnings for the similarities between the two techniques, as well as the differences in their application. The SAM technique is employed to determine likely mechanisms for smaller areas of increased probability identified by the PI index, while a modified version of the PI index can be used to locate regions where the smaller magnitude associated with the anomaly is below the resolution of the SAM. Finally, we present three case studies from different regions of the San Andreas fault system to illustrate both their complementary nature, as well as the advantages to combining them in one synthesized analysis.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号