首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental analysis was performed using multiplicative algebraic reconstruction technique (MART) to map the ionosphere over Brazil. Code and phase observations from the global navigation satellite system (GNSS) together with the international reference ionosphere (IRI) enabled the estimation of ionospheric profiles and total electron content (TEC) over the entire region. Twenty-four days of data collected from existing ground-based GNSS receivers during the recent solar maximum period were used to analyze the performance of the MART algorithm. The results were compared with four ionosondes. It was demonstrated that MART estimated the electron density peak with the same degree of accuracy as the IRI model in regions with appropriate geometrical coverage by GNSS receivers for tomographic reconstruction. In addition, the slant TEC, as estimated with MART, presented lower root-mean-square error than the TEC calculated by ionospheric maps available from the International GNSS Service (IGS). Furthermore, the daily variations of the ionosphere were better represented with the algebraic techniques, compared to the IRI model and IGS maps, enabling a correlation of the elevation of the ionosphere at higher altitudes with the equatorial ionization anomaly intensification. The tomographic representations also enabled the detection of high vertical gradients at the same instants in which ionospheric irregularities were evident.  相似文献   

2.
利用单站GPS观测数据对GPS硬件系统延迟作出修正,得到较精确的电离层总电子含量。根据Chapman电离层理论,建立电离层模型,利用遗传算法优化选择电离层关键参量,反演得到接收机上空电子密度剖面,结果表明:该方法用于太阳活动高年白天电子密度剖面反演效果优于国际参考电离层。  相似文献   

3.
The in situ measurements of electron contents from GRACE K-band (dual-frequency) ranging system and CHAMP planar Langmuir probe were used to validate the international reference ionosphere (IRI) models. The comparison using measurements from year 2003 to 2007 shows a general agreement between data and the model outputs. The improvement in the newer IRI model (IRI-2007) is evident with the measurements from the GRACE satellites orbiting at the higher altitude. We present the comparison between the models and data comprehensively for various cases in solar activity, local time, season, and latitude. The IRI models do not well predict the electron density in the years 2006 and later, when the solar activity is extremely low. The IRI models generally overestimate the electron density during local winter while they underestimate during local summer. In the equatorial region, the large difference at local sunrise lasts for all years and all seasons. The IRI models do not perform well in predicting the anomaly in the polar region such as the Weddell Sea Anomaly. These discrepancies are likely due to smoothed (12-month averaged) solar activity indices used in the IRI models and due to insufficient spherical harmonic representation not able to capture small spatial scales. In near future, further improvement on the IRI models is expected by assimilating those in situ satellite data by implementing higher resolution (spatial and temporal) parameterizations.  相似文献   

4.
LEO卫星单频精密定轨电离层模型改进算法   总被引:1,自引:1,他引:0  
电离层延迟的有效改正是LEO卫星单频精密定轨的关键所在。目前主要采用电离层比例因子法进行LEO卫星电离层延迟改正,但该方法在电子密度峰值高度确定时未考虑太阳活动、经纬度、昼夜变化、季节等因素的影响。IRI2012模型虽然考虑了上述因素对电子密度峰值高度的影响,但因其与电离层薄层高度选择的标准不一致,通常它们之间存在系统性偏差而无法直接使用。为此本文提出将电离层薄层高度作为约束条件对IRI2012模型确定的电子密度峰值高度的均值进行参数约束估计,得到一种改进的电离层模型算法,并利用Swarm卫星GPS观测数据对其进行验证。结果表明:改进的电离层模型对Swarm卫星径向、切向和法向定轨精度均有不同程度的提高,尤其对轨道径向和法向精度改善最为明显,分别提高了31.6%和32.0%;同时较大幅度地降低了轨道的系统性偏差,尤其是在径向和法向,分别平均降低了65.0%和54.7%。  相似文献   

5.
兰孝奇  李森  解坤 《测绘科学》2012,(4):17-18,31
电离层是近地空间的重要组成部分,如何对电离层的异常扰动进行合理监测与预报一直是空间物理领域的研究课题。本文将计算机层析成像技术引入到电离层扰动监测中,利用大量的区域地基GPS观测数据,借助代数层析迭代算法反演得到三维电离层电子密度;并将层析结果与国际电离层参考模型IRI2007进行对比分析,结果表明:地基GPS层析所得的电离层电子密度与IRI2007基本一致,但层析结果精度略高于IRI2007模型。  相似文献   

6.
60~100 km低电离层对无线电传播、测量具有重大影响。IRI2016作为目前最新的国际参考电离层模型,研究其提供的电子密度在高度60~100 km的精度具有重要实际意义。本文以廊坊中频雷达(位于中纬度地区)提供的电子密度资料(2014—2016年)为基准,利用偏差、绝对差、相关系数、相对偏差和Lomb-Scargle周期图方法,定量分析了IRI2016模型电子密度在中纬度地区60~100 km高度范围内的精度特征。结果表明,在中纬度地区60~100 km高度范围内:①电子密度偏差、绝对差、相对偏差与季节有密切关系,在高度86~100 km,随高度增加均快速增大;相关系数同样与季节有密切关系,但随高度增加表现出增大、减小的交替变化特征;②IRI2016模型电子密度精度与太阳活动、地磁条件有关,在太阳活动低年、磁宁静条件下的电子密度精度最高;③中频雷达和IRI2016模型电子密度在82~84 km均显著(通过90%显著性检验)含有准全日潮汐波、准8 h重力波,同时IRI2016模型还显著含有准半日潮汐波,而中频雷达未显著含有准半日潮汐波;在86~92 km均显著含有准全日潮汐波、准半日潮汐波,无准8 h重力波;④中频雷达、IRI2016模型电子密度在同一高度层显著含有的波周期及功率谱存在差异,不同高度层之间显著含有的波周期及功率谱也存在差异;⑤对于高度82~92 km的中频雷达、IRI2016模型电子密度变化特征,准全日潮汐波均为主要作用,准8 h重力波在82 km为次要作用,而准半日潮汐波在86~92 km为次要作用。  相似文献   

7.
Most of the space-geodetic observation techniques can be used for modeling the distribution of free electrons in the Earth’s ionosphere. By combining different techniques one can take advantage of their different spatial and temporal distributions as well as their different observation characteristics and sensitivities concerning ionospheric parameter estimation. The present publication introduces a procedure for multi-dimensional ionospheric modeling. The model consists of a given reference part and an unknown correction part expanded in terms of B-spline functions. This approach is used to compute regional models of Vertical Total Electron Content (VTEC) based on the International Reference Ionosphere (IRI 2007) and GPS observations from terrestrial Global Navigation Satellite System (GNSS) reference stations, radio occultation data from Low Earth Orbiters (LEOs), dual-frequency radar altimetry measurements, and data obtained by Very Long Baseline Interferometry (VLBI). The approach overcomes deficiencies in the climatological IRI model and reaches the same level of accuracy than GNSS-based VTEC maps from IGS. In areas without GNSS observations (e.g., over the oceans) radio occultations and altimetry provide valuable measurements and further improve the VTEC maps. Moreover, the approach supplies information on the offsets between different observation techniques as well as on their different sensitivity for ionosphere modeling. Altogether, the present procedure helps to derive improved ionospheric corrections (e.g., for one-frequency radar altimeters) and at the same time it improves our knowledge on the Earth’s ionosphere.  相似文献   

8.
本文利用IRI2007模型和江苏CORS网数据,结合附加约束的同时迭代重构算法,反演了地磁平静日江苏上空电子密度的结构分布。结果表明,整个研究区域电子密度在不同纬度和不同高度上存在明显的日变特征,电子密度最大值出现在北京时13~15时,随着时间推移,峰值幅度衰减;白天出现明显的E层,夜晚消失;反演结果说明了电离层三维层析技术为监测电离层时空结构提供了一种强有力的实验支持。  相似文献   

9.
吴寒  吴燕苹  吴亚君  孔建 《测绘通报》2017,(10):120-123
提出了一种改进的基于卫星轨迹的电离层区域建模方法,详细讨论了基于卫星轨迹电离层区域建模的基本原理,并利用IGS SHAO单基准站数据建模试验,分析验证了基于卫星轨迹的电离层建模方法的可靠性。该模型可以有效表达电子密度小区域陡变,模型区域拟合精度在1~3 TECU。  相似文献   

10.
孟范伟  郭英  刘振 《东北测绘》2014,(1):215-218
分析了地震、磁暴、太阳耀斑等自然现象引发电离层异常的物理机制,并总结了电离层异常的特点。针对电离层中电子分布受地磁、太阳热辐射和地壳变动等影响较大,基于抛物层和赤道双峰模型建立了电子密度呈高斯型分布的电离层异常模型,为进一步研究电离层异常的耦合机制提供了依据。  相似文献   

11.
An alternative approach to the traditionally employed method is proposed for treating the ionospheric range errors in transionospheric propagation such as for GNSS positioning or satellite-borne SAR. It enables the effects due to horizontal gradients of electron density (as well as vertical gradients) in the ionosphere to be explicitly accounted for. By contrast with many previous treatments, where the expansion of the solution for the phase advance is represented as the series in the inverse frequency powers and the main term of the expansion corresponds to the true line-of-sight distance from the transmitter to the receiver, in the alternative technique the zero-order term is the rigorous solution for a spherically layered ionosphere with any given vertical electron density profile. The first-order term represents the effects due to the horizontal gradients of the electron density of the ionosphere, and the second-order correction appears to be negligibly small for any reasonable parameters of the path of propagation and its geometry for VHF/UHF frequencies. Additionally, an “effective” spherically symmetric model of the ionosphere has been introduced, which accounts for the major contribution of the horizontal gradients of the ionosphere and provides very high accuracy in calculations of the phase advance.  相似文献   

12.
电离层参量的提取是开展电离层研究的基础,而数据同化技术则是获取电离层参量的一种重要手段。以NeQuick模型的输出作为背景场,Kalman滤波作为同化算法,利用数据同化技术实现区域电离层TEC重构,结果表明,数据同化方法重构的倾斜总电子含量(TEC)和垂直TEC与实测值较为一致。相比NeQuick模型及全球电离层地图(GIM)数据,数据同化方法重构得到的TEC的平均误差和标准差均有明显的降低,实测数据验证了数据同化技术在区域TEC重构中的精度和可靠性。  相似文献   

13.
The ionospheric F2-layer peak density (NmF2) and its height (hmF2) are of great influence on the shape of the ionospheric electron density profile Ne (h) and may be indicative of other physical processes within the ionosphere, especially those due to geomagnetic storms. Such parameters are often estimated using models such as the semiempirical international reference ionosphere (IRI) models or are measured using moderately priced to expensive instrumentation, such as ionosondes or incoherent scatter radars. Global positioning system (GPS) observations have become a powerful tool for mapping high-resolution ionospheric structures, which can be used to study the ionospheric response to geomagnetic storms. In this paper, we describe how 3-D ionospheric electron density profiles were produced from data of the dense permanent Korean GPS network using the tomography reconstruction technique. These profiles are verified by independent ionosonde data. The responses of GPS-derived parameters at the ionospheric F2-layer to the 20th November 2003 geomagnetic storm over South Korea are investigated. A fairly large increase in the electron density at the F2-layer peak (the NmF2) (positive storm) has been observed during this storm, which is accompanied by a significant uplift in the height of the F2 layer peak (the hmF2). This is confirmed by independent ionosonde observations. We suggest that the F2-layer peak height uplift and NmF2 increase are mainly associated with a strong eastward electric field, and are not associated with the increase of the O/N2 ratio obtained from the GUVI instruments aboard the TIMED satellite. It is also inferred that the increase in NmF2 is not caused by the changes in neutral composition, but is related to other nonchemical effects, such as dynamical changes of vertical ion motions induced by winds and E × B drifts, tides and waves in the mesosphere/lower thermosphere region, which can be dynamically coupled upward to generate ionospheric perturbations and oscillations.  相似文献   

14.
卫星测高资料的电离层延迟改正交叉检验与误差分析   总被引:1,自引:0,他引:1  
对单频和双频卫星测高电离层改正进行了分析和比较。以Topex卫星双频电离层改正噪声影响为例,采用沿轨高斯低通滤波后,其交叉点不符值RMS可减小5.7~7.3mm。将平滑后的双频Topex电离层改正与DORIS模型、新发展的IRI2007同化模型和根据全球连续GPS跟踪站实测数据建立的GIM模型进行了交叉比较,结果表明,根据实测数据建立的DORIS和GIM模型精度高于IRI2007模型;与上述3个模型的差值统计结果还显示了平滑后的Topex双频电离层改正存在的10~15mm的系统偏差。  相似文献   

15.
将香港地区某天由电离层层析反演得到的电子密度值分成6组,利用神经网络方法对该6组数据分别进行了拟合建模及预报。实验结果表明,采用电离层层析技术并经神经网络模型预报得出的电子密度值精度明显高于由IRI2007模型提供的电子密度值,其预报的30min及60min的电子密度值精度可分别达到0.45TECU和1.34TECU。  相似文献   

16.
In precise point positioning (PPP), the ionospheric delay is corrected in a first-order approximation from GPS dual-frequency observations, which should eliminate almost completely the ionosphere as a source of error. However, sudden plasma density variations can adversely affect the GPS signal, degrading accuracy and reliability of positioning techniques. The occurrence of plasma density irregularities is frequent at equatorial latitudes and is reflected in large total electron content (TEC) variations. We study the relation between large changes in the rate of TEC (ROT) and positioning errors in single-epoch PPP. At equatorial latitudes and during post-sunset hours, the estimated altitudes contain errors of several meters for a single-epoch position determination, and latitude and longitude estimates are also degraded. These results have been corroborated by the online CSRS-PPP (NRCan) program. Moreover, abrupt changes in the satellite geometry have been discarded as possible cause of such errors, suggesting an apparent relation between the occurrence of large ROT and degraded position estimates.  相似文献   

17.
The majority of navigation satellite receivers operate on a single frequency. They compensate for the ionospheric delay using either an ionospheric model which typically only corrects for 50% of the delay or a thin-shell map of the ionosphere. A 4D tomographic imaging technique is used to map the free electron density over the full-height of the ionosphere above North America during autumn 2003. The navigation solutions computed using correction based upon the thin-shell and the full-height maps are compared in this paper. The maps are used to calculate the excess propagation delay on the L1 frequency experienced by GPS receivers at selected locations across North America. The excess delay is applied to correct the single-frequency pseudorange observations at each location, and the improvements to the resulting positioning are calculated. It is shown that the thin-shell and full-height maps perform almost as well as a dual-frequency carrier-smoothed benchmark and for most receivers better than the unfiltered dual-frequency benchmark. The full-height corrections perform well and are considerably better than thin-shell corrections under extreme storm conditions.  相似文献   

18.
电离层层析成像技术非常适用于检测电离层电子密度的大尺度空间分布及其扰动。利用地面单站的GPSTEC值和另一站的数字测高仪观测数据,结合国际参考电离层(IRI),利用MART算法反演得到测站上空电子密度的垂直分布。利用白天和夜间的实测数据进行了CIT反演,结果表明了该方法的可靠性。  相似文献   

19.
Ionospheric delay is a dominant error source in Global Navigation Satellite System (GNSS). Single-frequency GNSS applications require ionospheric correction of signal delay caused by the charged particles in the earth’s ionosphere. The Chinese Beidou system is developing its own ionospheric model for single-frequency users. The number of single-frequency GNSS users and applications is expected to grow fast in the next years in China. Thus, developing an appropriate ionospheric model is crucially important for the Chinese Beidou system and worldwide single-frequency Beidou users. We study the performance of five globally accessible ionospheric models Global Ionospheric Map (GIM), International Reference Ionosphere (IRI), Parameterized Ionospheric Model (PIM), Klobuchar and NeQuick in low- and mid-latitude regions of China under mid-solar activity condition. Generally, all ionospheric models can reproduce the trend of diurnal ionosphere variations. It is found that all the models have better performances in mid-latitude than in low-latitude regions. When all the models are compared to the observed total electron content (TEC) data derived from GIM model, the IRI model (2012 version) has the best agreement with GIM model and the NeQuick has the poorest agreement. The RMS errors of the IRI model using the GIM TEC as reference truth are about 3.0–10.0 TECU in low-latitude regions and 3.0–8.0 TECU in mid-latitude regions, as observed during a period of 1 year with medium level of solar activity. When all the ionospheric models are ingested into single-frequency precise point positioning (PPP) to correct the ionospheric delays in GPS observations, the PIM model performs the best in both low and mid-latitudes in China. In mid-latitude, the daily single-frequency PPP accuracy using PIM model is ~10 cm in horizontal and ~20 cm in up direction. At low-latitude regions, the PPP error using PIM model is 10–20 cm in north, 30–40 cm in east and ~60 cm in up component. The single-frequency PPP solutions indicate that NeQuick model has the lowest accuracy among all the models in both low- and mid-latitude regions of China. This study suggests that the PIM model may be considered for single-frequency GNSS users in China to achieve a good positioning accuracy in both low- and mid-latitude regions.  相似文献   

20.
A new two-step algorithm for ionospheric tomography solution   总被引:3,自引:2,他引:1  
Ionospheric tomography inverse algorithms are usually an ill-conditioned problem because the geometric distribution of continuously operating reference GPS stations is not ideal for this task. In order to cope with such ill-conditioning, a new tomographic algorithm, termed two-step algorithm (TSA), is presented. The electron density is estimated in two steps: Phillips smoothing method (PSM) is first used to resolve the ill-conditioned problem in the ionospheric tomography system, and then, the PSM solution is input as an initial value to the multiplicative algebraic reconstruction technique (MART) and iteratively improved. Numerical simulations using the International Reference Ionosphere 2007 model demonstrate that the TSA is applicable to GPS-based ionospheric tomography reconstruction and is superior to PSM and MART when these techniques are used alone. The new algorithm is applied to reconstruct the ionospheric electron density distribution over China using GPS observations, and a comparison with ionosonde observations is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号