首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE 1 and RG 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.  相似文献   

2.
There is concern regarding the long-term vibration effects caused by metro trains on historic buildings. In this paper, the impact of metro train-induced vibrations on the Bell Tower in Xi’an above two spatially overlapping tunnels was studied.Metro Line 2 has been operational since 2011, and Line 6 is still under construction. To study and control the effect of micro vibrations on the Bell Tower, a metro train–track–tunnel–soil 3D dynamic FE model was developed. The vibration response generated by Line 2 was then predicted, and the influences of train speed on ground vibration were analysed. In addition, a detailed in situ measurement, which helped calibrate the numerical model and determine the dynamic behaviour of timber structures, was performed. Finally, the calibrated models and measured results were used to predict vibrations caused by road traffic and trains from two spatially overlapping metro lines. This was performed under different route schemes and train operation conditions.The results showed that installing steel spring floating slab tracks (FST) and decreasing train speeds had obvious effects on controlling the ground peak particle velocity (PPV). Simulated results from both the input impulse and output response generated by metro Line 2 matched well with actual measurements. If correct designs are employed, it is possible to resolve the vibration problem on historic buildings caused by metro trains.  相似文献   

3.
A field measurement of ground vibration was performed on the Beijing−Shanghai high-speed railway in China. In this paper, the experimental results of vertical ground vibration accelerations induced by very high speed trains running over a non-ballasted track on embankment with speeds from 300 to 410 km/h are reported and analyzed in detail for the first time. Characteristics of ground vibration accelerations in both time and frequency domains are analyzed based on the test data. It is shown that the periodic exciting action of high-speed train bogies can be identified in time histories of vertical accelerations of the ground within the range of 50 m from the track centerline. The first dominant sensitive frequency of the ground vibration acceleration results from the wheelbase of the bogie, and the center distance of two neighboring cars plays an important role in the significant frequencies of the ground vibration acceleration. Variations of time–response peak value and frequency-weighted vertical acceleration level of ground vibration in relation with train speed as well as the distance from the track centerline are also investigated. Results show that the time-domain peak value of ground vibration acceleration exhibits an approximately linear upward tendency with the increase of train speed. With the increasing distance from the track centerline, the frequency-weighted vertical acceleration level of the ground vibration attenuates more slowly than the time-domain peak value of the ground vibration acceleration does. Severe impact of high-speed railway ground vibration on human body comfort on the ground occurs at the speed of 380–400 km/h. The results given in the paper are also valuable for validating the numerical prediction of train induced ground vibrations.  相似文献   

4.
The development of analysis on train-induced ground vibration is briefly summarized. A train-track-ground integrated dynamic model is introduced in the paper to predict the ground vibration induced by high-speed trains. Representative dynamic responses of the train-track-ground system predicted by the model are presented. Some major results measured from two field tests on the ground vibration induced by two high-speed trains are reported. Numerical prediction with the proposed train-track-ground model is validated by the high-speed train running experiments. Research results show that the wheel/rail dynamic interaction caused by track irregularities has a significant influence on the ground acceleration and little influence on the ground displacement. The main frequencies of the ground vibration induced by high-speed trains are usually below 80 Hz. Compared with the ballasted track, the ballastless track structure can produce much larger train-induced ground vibration at frequencies above 40 Hz. The vertical ground vibration is much larger than the lateral and longitudinal components.  相似文献   

5.
In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing-Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains indu...  相似文献   

6.
Recent advances in railway-induced ground vibrations showed that the track/soil interaction plays an important role in the low frequency range. This paper contributes to the numerical analysis of train/track/foundation dynamics by presenting the accuracy of a coupled lumped mass (CLM) model devoted to the railway foundations and to the track/soil coupling. Following a summary of the background and the advantages of the CLM model, the coupling strategy is quantified through two application cases. Firstly, the dynamic track deflection is calculated for different railway lines considering various degrees of complexities of foundations. Then, the foundation responses are compared depending on whether detailed coupling is introduced or not. The benefit of the proposed model is emphasized by presenting free-field ground vibration responses generated by a tram and a high-speed train, obtained by a revisited two-step prediction model developed by the authors.  相似文献   

7.
对沪宁城际铁路CRH动车组运行引起的高架桥段地面振动竖向速度和加速度进行了现场测试,分析了地面振动特征及其传播的衰减规律。结果表明:CRH动车组运行引起的地面振动主频在70Hz以下,属于低频振动;地面振动峰值速度和加速度随着离高架桥距离的增大而减小,20m以内地面振动衰减幅度较大;地面振动峰值随列车时速的提高而增大,车厢数量对地面振动峰值和主频成分的影响不明显;CRH动车组运行引起的地面振动对一般性建筑物影响不大,列车时速为300km左右时,地面振动速度超过办公室等公共建筑的允许值,列车时速为200km左右时,地面振动速度超过居民住宅的允许值;与其他高速铁路的地面振动实测值相比,沪宁城际铁路CRH动车组运行引起的高架桥段地面振动强度相对较低。  相似文献   

8.
This study proposes a Green’s function,an essential representation of water-saturated ground under moving excitation,to simulate ground borne vibration from trains.First,general solutions to the governing equations of poroelastic medium are derived by means of integral transform.Secondly,the transmission and reflection matrix approach is used to formulate the relationship between displacement and stress of the stratified ground,which results in the matrix of the Green’s function.Then the Green’s function is combined into a train-track-ground model,and is verified by typical examples and a field test.Additional simulations show that the computed ground vibration attenuates faster in the immediate vicinity of the track than in the surrounding area.The wavelength of wheel-rail unevenness has a notable effect on computed displacement and pore pressure.The variation of vibration intensity with the depth of ground is significantly influenced by the layering of the strata soil.When the train speed is equal to the velocity of the Rayleigh wave,the Mach cone appears in the simulated wave field.The proposed Green’s function is an appropriate representation for a layered ground with shallow ground water table,and will be helpful to understand the dynamic responses of the ground to complicated moving excitation.  相似文献   

9.
10.
The main objectives of this paper are the evaluation of the relevance of the non-linear behaviour of the soil on the track response and the validation of a methodology, which includes these effects through an equivalent linear analysis. The proposed numerical model is based on 2.5D finite/infinite elements method, coupled with an iterative procedure in order to obtain an agreement between the strain levels and the dynamic properties of the materials. In order to validate the model, the case study of Ledsgard was simulated, and the experimental and numerical results of displacements of the track were compared, considering several circulation speeds for the X2000 train. From the results, it is possible to recognize that the stiffness degradation, function of the strain level, plays a relevant role for the case of high-speed railway lines on soft ground. Moreover, the simulations developed with the proposed methodology provided similar results to those observed, independently of the train speed, contrary to what was obtained when the elastic linear model was used.  相似文献   

11.
Diagnosis and prediction of vibration from railway trains   总被引:7,自引:0,他引:7  
In the North West of France, more particularly in the region of the Somme Bay, where the ground is constituted mainly of peat, observation of the surface of the soil near railway tracks has revealed high levels of displacement. This paper, contains a prediction model and diagnosis of vibration near the track. A model of a railway track on layered ground subjected to a moving train has been built and the calculation method uses Fourier transform formalism for a semi-analytical solution in the wave number domain. It includes all elements of the track and allows a parametric analysis of its different elements and evaluation of vertical displacement according to the speed, weight and composition of each train. The diagnosis has been performed with in situ measurements and with the aim of the validation of the model. A parameter study of the ground undertaken by seismic measurements shows a critical speed close to 100 m/s while the studied trains are moving with sub-Rayleigh speeds. Measurements give us a lot of information about lateral and vertical acceleration on the soil's surface and parts of the track. For high speeds and freight trains, displacement reaches more than 10 mm.  相似文献   

12.
本文将轨道车辆系统仿真成由车厢、转向架及轮轴所组成。车厢与转向架间有次悬吊系统,转向架与轮轴间则有主悬吊系统。数学模型的推导将考虑车辆横向、垂向、翻滚及摇摆方向的运动,将车辆仿真成三维具16个自由度的系统。本研究将探讨行驶高架桥梁的轨道车辆受地震激振时的响应和安全性,结果显示,移轨力及脱轨系数会随着地表加速度的增加而增加,而轨道不平整度及速度参数对脱轨系数及移轨力的影响不大。  相似文献   

13.
An analytical procedure is presented for determining groundborne vibrations in buildings due to subway trains. The procedure involves a finite element idealization of the subway-soil-structure interaction problem, using an analytical model for the train loading spectrum at the tunnel invert. Both direct fixation and floating slab track support systems are considered. The train model is verified using the measurements of rail velocities. The proposed procedure is applied to the case of a four-storey podium block enclosing twin double-box subways within the confines of its ribbed wall foundations. The severity of velocity response levels of the building, in relation to vibration standards, is also considered.  相似文献   

14.
Train viaduct behavior and nearby ground motion under the high-speed train passage have been studied in this paper. First, the findings from the field measurement alongside the high-speed Shinkansen railway in Japan are interpreted. Then, the computer simulation is made based on the soil-foundation-viaduct interaction analysis under moving axle loads. The solution method is to apply the dynamic substructure method in the frequency domain. The viaduct girders including track structure and pier supports are modeled by the three-dimensional beam-column elements. The supporting pile foundation and nearby field are discretized by the axisymmetric three-dimensional finite elements and analyzed in a semi-analytical way, with a transmitting boundary replacing the far field based on the thin layer element method. Nearby ground motion during train passage on a viaduct have been calculated by superimposing the effects from neighboring pile foundations.The main parameters affecting viaduct vibrations are discussed by taking environmental vibration into consideration. The nearby ground motion along the viaduct is recomputed by applying the above determined forces to the foundation tops. The results from numerical studies are compared with the field test data, thus proving the present simulation to be effective and reliable.  相似文献   

15.
In recent years, the high-speed train (HST) network has developed considerably, unfortunately increasing vibration nuisances in its neighbourhood. This paper aims to present some vibration measurements collected on a Belgian site located between Brussels and Paris/London and travelled by the Thalys and Eurostar high-speed trains, and to compare them with the results obtained by a recently developed model, involving the compound vehicle/track/soil system. Assuming that the soil can be reasonably decoupled from the track, the approach first considers the train/track subsystem. The latter is studied by combining a multibody model of the vehicle with a finite element model of the track, both so far limited to the vertical motion. The ground forces given by this first simulation are then applied on a finite/infinite element model of the soil subsystem, where the infinite elements are placed on the border of the mesh in order to properly represent an unbounded domain. Both simulations are performed in the time domain, offering the opportunity to include non-linearities. The good correspondence between numerical and experimental results shows that the model is reliable for predicting the vibration produced by the high-speed vehicles. Finally, the paper presents some cases showing the importance of including the complete vehicle and the soil layering to the model.  相似文献   

16.
Model testing in laboratory, as an effective alternative to field measurement, provides valuable data to understand railway׳s dynamic behaviors under train moving loads. This paper presents comprehensive experimental results on track vibration and soil response of a ballastless high-speed railway from a full-scale model testing with simulated train moving loads at various speeds. A portion of a realistic ballastless railway comprising slab track, roadbed, subgrade, and subsoil was constructed in a larger steel box. A computer-controlled sequential loading system was developed to generate equivalent vertical loadings at the track structure for simulating the dynamic excitations due to train׳s movements. Comparisons with the field measurements show that the proposed model testing can accurately reproduce dynamic behaviors of the track structure and underlying soils under train moving loads. The attenuation characteristics of dynamic soil stresses in a ballastless slab track is found to have distinct differences from that in a ballasted track. The model testing results provide better understanding of the influence of dynamic soil–structure interaction and train speed on the response of track structure and soils.  相似文献   

17.
为降低无破坏性的近震小震对高速铁路地震报警的干扰,本文引入改进的标准化累积绝对速度作为报警参数,研究基于改进的标准化累积绝对速度地震报警阈值计算方法。通过建立车轨模型,分析不同周期横向简谐波作用下的列车安全运行极限状态,得出不同车速下改进的标准化累积绝对速度的起算阈值。参照标准化累积绝对速度CAVSTD计算公式,给出不同车速下改进的标准化累积绝对速度计算公式,并计算不同时速下列车分别在6条不同场地地震波作用下改进的标准化累积绝对速度报警阈值。  相似文献   

18.
The use of ballastless slab track is significantly increasing in HST line technology. This development is due to some structural and operational advantages over ballasted track. In addition, floating slab tracks can be used to control ground-borne vibrations generated by surface and underground rail transportation systems. In this paper, a general and fully three dimensional multi-body-finite element-boundary element model is used to study vibrations due to train passage on ballast and non-ballast tracks. The vehicle is modelled as a multi-body system, the track, in both cases, using finite elements and the soil is represented using boundary elements. The three components of the load are considered; the quasi-static excitation (force generated by moving axle loads), the parametric excitation due to discrete supports of the rails and the excitation due to wheel and rail roughness and track unevenness. Track receptances are computed for both track systems and vibrations induced by high-speed train passage at the track and the free-field are evaluated for different train speeds. Soil behaviour changes significantly with the track system. Finally, a floating slab track is studied to show how this type of solution leads to a significant vibration reduction for surface tracks.  相似文献   

19.
In this paper, a numerical approach for the prediction of vibrations induced in buildings due to railway traffic in tunnel is proposed. The numerical method is based on a sub-structuring approach, where the train is simulated by a multi-body model; the track–tunnel–ground system is modeled by a 2.5D FEM–PML approach; and the building by resource to a 3D FEM method. The coupling of the building to the ground is established taking into account the soil–structure-interaction (SSI). The methodology proposed allows dealing with the three-dimensional characteristics of the problem with a reasonable computational effort. Using the proposed model, a numerical study is developed in order to better discern the impact of the use of floating slabs systems for the isolation of vibrations in the tunnel on the dynamic response of a building located in the surrounding of the tunnel. The comparison between isolated and non-isolated scenarios allowed concluding that the mats stiffness is a key parameter on the efficiency of floating slab systems. Furthermore, it was found that the selection of the stiffness of the mats should be performed carefully in order to avoid amplification of vertical vibrations of the slabs of the building.  相似文献   

20.
An analytical approach is used to investigate dynamic responses of a track system and the poroelastic half-space soil medium subjected to a moving point load under three-dimensional condition. The whole system is divided into two separately formulated substructures, the track sub-system and the ground. The ballast supporting rails and sleepers is placed on the surface of the ground. The rail is modeled by introducing the Green function for an infinitely long Euler beam subjected to the action of the moving point load and the reaction of sleepers represented by a continuous mass. Using the double Fourier transform, the governing equations of motion are then solved analytically in the frequency–wave-number domain. The time domain responses are evaluated by the inverse Fourier transform computation for a certain load velocities. Computed results show that dynamic responses of the soil medium are considerably affected by the fluid phase as well as the load velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号