首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

2.
Ephesite, Na(LiAl2) [Al2Si2O10] (OH)2, has been synthesized for the first time by hydrothermal treatment of a gel of requisite composition at 300≦T(° C)≦700 and \(P_{H_2 O}\) upto 35 kbar. At \(P_{H_2 O}\) between 7 and 35 kbar and above 500° C, only the 2M1 polytype is obtained. At lower temperatures and pressures, the 1M polytype crystallizes first, which then inverts to the 2M1 polytype with increasing run duration. The X-ray diffraction patterns of the 1M and 2M1 poly types can be indexed unambiguously on the basis of the space groups C2 and Cc, respectively. At its upper thermal stability limit, 2M1 ephesite decomposes according to the reaction (1) $$\begin{gathered} {\text{Na(LiAl}}_{\text{2}} {\text{) [Al}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{{\text{10}}} {\text{] (OH)}}_{\text{2}} \hfill \\ {\text{ephesite}} \hfill \\ {\text{ = Na[AlSiO}}_{\text{4}} {\text{] + LiAl[SiO}}_{\text{4}} {\text{] + }}\alpha {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}} {\text{ + H}}_{\text{2}} {\text{O}} \hfill \\ {\text{nepheline }}\alpha {\text{ - eucryptite corundum}} \hfill \\ \end{gathered}$$ Five reversal brackets for (1) have been established experimentally in the temperature range 590–750° C, at \(P_{H_2 O}\) between 400 and 2500 bars. The equilibrium constant, K, for this reaction may be expressed as (2) $$log K{\text{ = }}log f_{{\text{H}}_{\text{2}} O}^* = 7.5217 - 4388/T + 0.0234 (P - 1)T$$ where \(f_{H_2 O}^* = f_{H_2 O} (P,T)/f_{H_2 O}^0\) (1,T), with T given in degrees K, and P in bars. Combining these experimental data with known thermodynamic properties of the decomposition products in (1), the following standard state (1 bar, 298.15 K) thermodynamic data for ephesite were calculated: H f,298.15 0 =-6237372 J/mol, S 298.15 0 =300.455 J/K·mol, G 298.15 0 =-5851994 J/mol, and V 298.15 0 =13.1468 J/bar·mol.  相似文献   

3.
The Gibbs free energy and volume changes attendant upon hydration of cordierites in the system magnesian cordierite-water have been extracted from the published high pressure experimental data at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =P total, assuming an ideal one site model for H2O in cordierite. Incorporating the dependence of ΔG and ΔV on temperature, which was found to be linear within the experimental conditions of 500°–1,000°C and 1–10,000 bars, the relation between the water content of cordierite and P, T and \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) has been formulated as $$\begin{gathered} X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} = \hfill \\ \frac{{f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }}{{\left[ {{\text{exp}}\frac{1}{{RT}}\left\{ {64,775 - 32.26T + G_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{1, }}T} - P\left( {9 \times 10^{ - 4} T - 0.5142} \right)} \right\}} \right] + f_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{P, T}}} }} \hfill \\ \end{gathered} $$ The equation can be used to compute H2O in cordierites at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) <1. Our results at different P, T and partial pressure of water, assuming ideal mixing of H2O and CO2 in the vapour phase, are in very good agreement with the experimental data of Johannes and Schreyer (1977, 1981). Applying the formulation to determine \(X_{{\text{H}}_{\text{2}} {\text{O}}}^{{\text{crd}}} \) in the garnet-cordierite-sillimanite-plagioclase-quartz granulites of Finnish Lapland as a test case, good agreement with the gravimetrically determined water contents of cordierite was obtained. Pressure estimates, from a thermodynamic modelling of the Fe-cordierite — almandine — sillimanite — quartz equilibrium at \(P_{{\text{H}}_{\text{2}} {\text{O}}} = 0\) and \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =Ptotal, for assemblages from South India, Scottish Caledonides, Daly Bay and Hara Lake areas are compatible with those derived from the garnetplagioclase-sillimanite-quartz geobarometer.  相似文献   

4.
Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$ The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent orthopyroxene and spinel. An ideal two-site mixing model for pyroxene and Sack's (1982) expressions for spinel activities provide, with the present experimental calibration, a geothermometer which yields temperatures of 800° C to 1,350° C for various alpine peridotites and 850° C to 1,130° C for various volcanic inclusions of upper mantle origin.  相似文献   

5.
A new determination of the equilibrium reaction: $$\begin{gathered} 2{\text{ Mg}}_{\text{2}} [{\text{SiO}}_{\text{4}} ] + 3{\text{ H}}_{\text{2}} {\text{O}} \rightleftharpoons {\text{1 Mg}}_{\text{3}} [({\text{OH)}}_{\text{4}} |{\text{Si}}_{\text{2}} {\text{O}}_{\text{5}} ] + 1{\text{ Mg(OH)}}_{\text{2}} \hfill \\ \hfill \\ {\text{ forsterite serpentine brucite}} \hfill \\ \end{gathered} $$ yielded equilibrium temperatures which lie (at identical H2O-pressures) about 60° C lower than all previously published data (Bowen and Tuttle, 1949; Yoder, 1952; Kitahara et al., 1966; Kitahara and Kennedy, 1967). It has been shown that the above authors have determined not the stable equilibrium curve but instead a metastable “synthesis boundary”. The actual (stable) equilibrium curve is located at 0,5 kb and 350° C 2,0 kb and 380° C 3,5 kb and 400° C 5,0 kb and 420° C 6,5 kb and 430° C.  相似文献   

6.
On formation of a bed and distribution of bed thickness, A. N. Kolmogorov presented a mathematical explanation that if repetitive alternations of material accumulation and erosion form a sequence of beds, the resultant bed-thickness distribution curve takes a shape truncated by the ordinate at zero thickness. In this truncated distribution curve, its continuation and extension from positive to negative thickness represents the distribution of beds with negative thickness, that is, the depth of erosion. When a distribution curve, including both positive and negative parts, is expressed by a function f(x),the ratio \(\int_0^\infty {f(x)dx to} \int_{ - \infty }^\infty {f(x)dx} \) ,called Kolmogorov's coefficient and designated as p,is a parameter representing the degree of accumulation in the depositional environment. On the assumption that f(x)is described by the Gaussian distribution function, the coefficient pfor Permian and Pliocene sequences in central Japan was calculated. The coefficients also were obtained from published data for different types of sediments from other areas. It was determined that they are more or less different depending on their depositional environments. The calculated results are summarized as follows: $$\begin{gathered} p = 0.80 - 1.0for{\text{ }}alluvial{\text{ }}or{\text{ }}fluvial{\text{ }}deposits \hfill \\ p = 0.65 - 0.95for{\text{ }}nearshore{\text{ }}sediments \hfill \\ p = 0.55 - 0.95for{\text{ }}geosynclinal{\text{ }}sediments \hfill \\ p = 0.90 - 1.0for{\text{ }}varves \hfill \\ \end{gathered} $$ In addition, a ratio \(q = \int_0^\infty {xf(x)dx/} \int_{ - \infty }^\infty {|x|f(x)dx} \) ,called Kolmogorov's ratio in this paper, is introduced for estimating a degree of total thickness actually observed in the field relative to total thickness once present in a basin. The calculated results of Kolmogorov's ratio are as follows: $$\begin{gathered} q = 0.88 - 1.0for{\text{ }}alluvial{\text{ }}or{\text{ }}fluvial{\text{ }}deposits \hfill \\ q = 0.68 - 0.98for{\text{ }}nearshore{\text{ }}sediments \hfill \\ q = 0.55 - 0.96for{\text{ }}geosynclinal{\text{ }}sediments \hfill \\ q = 0.92 - 1.0for{\text{ }}varves \hfill \\ \end{gathered} $$ The sedimentological significance of these values is discussed.  相似文献   

7.
The enthalpy of formation of andradite (Ca3Fe2Si3O12) has been estimated as-5,769.700 (±5) kJ/mol from a consideration of the calorimetric data on entropy (316.4 J/mol K) and of the experimental phaseequilibrium data on the reactions: 1 $$\begin{gathered} 9/2 CaFeSi_2 O_6 + O_2 = 3/2 Ca_3 Fe_2 Si_3 O_{12} + 1/2 Fe_3 O_4 + 9/2 SiO_2 (a) \hfill \\ Hedenbergite andradite magnetite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 4 CaFeSi_2 O_6 + 2 CaSiO_3 + O_2 = 2 Ca_3 Fe_2 Si_3 O_{12} + 4 SiO_2 (b) \hfill \\ Hedenbergite wollastonite andradite quartz \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} 18 CaSiO_3 + 4 Fe_3 O_4 + O_2 = 6Ca_3 Fe_2 Si_3 O_{12} (c) \hfill \\ Wollastonite magnetite andradite \hfill \\ \end{gathered} $$ 1 $$\begin{gathered} Ca_3 Fe_2 Si_3 O_{12} = 3 CaSiO_3 + Fe_2 O_3 . (d) \hfill \\ Andradite pseudowollastonite hematite \hfill \\ \end{gathered} $$ and $$log f_{O_2 } = E + A + B/T + D(P - 1)/T + C log f_{O_2 } .$$ Oxygen-barometric scales are presented as follows: $$\begin{gathered} E = 12.51; D = 0.078; \hfill \\ A = 3 log X_{Ad} - 4.5 log X_{Hd} ; C = 0; \hfill \\ B = - 27,576 - 1,007(1 - X_{Ad} )^2 - 1,476(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite (Ad)-hedenbergite (Hd)-magnetite-quartz: $$\begin{gathered} E = 13.98; D = 0.0081; \hfill \\ A = 4 log(X_{Ad} / X_{Hd} ); C = 0; \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-quartz: 1 $$\begin{gathered} E = 13.98;{\text{ }}D = 0.0081; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 0;}} \hfill \\ B = - 29,161 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-calcitequartz: 1 $$\begin{gathered} E = - 1.69;{\text{ }}D = - 0.199; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 2;}} \hfill \\ B = - 20,441 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 . \hfill \\ \end{gathered} $$ For the assemblage andradite-hedenbergite-wollastonite-calcite: 1 $$\begin{gathered} E = - 17.36;{\text{ }}D = - 0.403; \hfill \\ A = 4\log (X_{Ad} /X_{Hd} );{\text{ C = 4;}} \hfill \\ B = - 11,720 - 1,342.8(1 - X_{Ad} )^2 - 1,312(1 - X_{Hd} )^2 \hfill \\ \end{gathered} $$ The oxygen fugacity of formation of those skarns where andradite and hedenbergite assemblage is typical can be calculated by using the above equations. The oxygen fugacity of formation of this kind of skarn ranges between carbon dioxide/graphite and hematite/magnetite buffers. It increases from the inside zones to the outside zones, and appears to decrease with the ore-types in the order Cu, Pb?Zn, Fe, Mo, W(Sn) ore deposits.  相似文献   

8.
Experiments at high pressure and temperature indicate that excess Ca may be dissolved in diopside. If the (Ca, Mg)2Si2O6 clinopyroxene solution extends to more Ca-rich compositions than CaMgSi2O6, macroscopic regular solution models cannot strictly be applied to this system. A nonconvergent site-disorder model, such as that proposed by Thompson (1969, 1970), may be more appropriate. We have modified Thompson's model to include asymmetric excess parameters and have used a linear least-squares technique to fit the available experimental data for Ca-Mg orthopyroxene-clinopyroxene equilibria and Fe-free pigeonite stability to this model. The model expressions for equilibrium conditions \(\mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction A) and \(\mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{opx}}} = \mu _{{\text{Ca}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} }^{{\text{cpx}}} \) (reaction B) are given by: 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Mg}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ W_{21} [2(X_{{\text{Ca}}}^{{\text{M2}}} )^3 - (X_{{\text{Ca}}}^{{\text{M2}}} ] \hfill \\ {\text{ + 2W}}_{{\text{22}}} [X_{{\text{Ca}}}^{{\text{M2}}} )^2 - (X_{{\text{Ca}}}^{{\text{M2}}} )^3 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{Wo}}}^{{\text{opx}}} )^2 \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = {\text{RT 1n}}\left[ {\frac{{(X_{{\text{Ca}}}^{{\text{opx}}} )^2 }}{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Ca}}}^{{\text{M2}}} }}} \right] - \frac{1}{2}\{ 2W_{21} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^2 - (X_{{\text{Mg}}}^{{\text{M2}}} )^3 ] \hfill \\ {\text{ + W}}_{{\text{22}}} [2(X_{{\text{Mg}}}^{{\text{M2}}} )^3 - (X_{{\text{Mg}}}^{{\text{M2}}} )^2 + \Delta {\text{G}}_{\text{*}}^{\text{0}} (X_{{\text{Mg}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} )\} \hfill \\ {\text{ + W}}^{{\text{opx}}} (X_{{\text{En}}}^{{\text{opx}}} )^2 \hfill \\ \hfill \\ \end{gathered} $$ where 1 $$\begin{gathered} \Delta \mu _{\text{A}}^{\text{O}} = 2.953 + 0.0602{\text{P}} - 0.00179{\text{T}} \hfill \\ \Delta \mu _{\text{B}}^{\text{O}} = 24.64 + 0.958{\text{P}} - (0.0286){\text{T}} \hfill \\ {\text{W}}_{{\text{21}}} = 47.12 + 0.273{\text{P}} \hfill \\ {\text{W}}_{{\text{22}}} = 66.11 + ( - 0.249){\text{P}} \hfill \\ {\text{W}}^{{\text{opx}}} = 40 \hfill \\ \Delta {\text{G}}_*^0 = 155{\text{ (all values are in kJ/gfw)}}{\text{.}} \hfill \\ \end{gathered} $$ . Site occupancies in clinopyroxene were determined from the internal equilibrium condition 1 $$\begin{gathered} \Delta G_{\text{E}}^{\text{O}} = - {\text{RT 1n}}\left[ {\frac{{X_{{\text{Ca}}}^{{\text{M1}}} \cdot X_{{\text{Mg}}}^{{\text{M2}}} }}{{X_{{\text{Ca}}}^{{\text{M2}}} \cdot X_{{\text{Mg}}}^{{\text{M1}}} }}} \right] + \tfrac{1}{2}[(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} )(2{\text{X}}_{{\text{Ca}}}^{{\text{M2}}} - 1) \hfill \\ {\text{ + }}\Delta G_*^0 (X_{{\text{Ca}}}^{{\text{M1}}} - X_{{\text{Ca}}}^{{\text{M2}}} ) + \tfrac{3}{2}(2{\text{W}}_{{\text{21}}} - {\text{W}}_{{\text{22}}} ) \hfill \\ {\text{ (1}} - 2X_{{\text{Ca}}}^{{\text{M1}}} )(X_{{\text{Ca}}}^{{\text{M1}}} + \tfrac{1}{2})] \hfill \\ \end{gathered} $$ where δG E 0 =153+0.023T+1.2P. The predicted concentrations of Ca on the clinopyroxene Ml site are low enough to be compatible with crystallographic studies. Temperatures calculated from the model for coexisting ortho- and clinopyroxene pairs fit the experimental data to within 10° in most cases; the worst discrepancy is 30°. Phase relations for clinopyroxene, orthopyroxene and pigeonite are successfully described by this model at temperatures up to 1,600° C and pressures from 0.001 to 40 kbar. Predicted enthalpies of solution agree well with the calorimetric measurements of Newton et al. (1979). The nonconvergent site disorder model affords good approximations to both the free energy and enthalpy of clinopyroxenes, and, therefore, the configurational entropy as well. This approach may provide an example for Febearing pyroxenes in which cation site exchange has an even more profound effect on the thermodynamic properties.  相似文献   

9.
Reactions involving the phases quartz-rhodochrosite-tephroite-pyroxmangite-fluid have been studied experimentally in the system MnO-SiO2-CO2-H2O at a pressure of 2 000 bars and resulted in the following expressions 1 $$\begin{gathered} {\text{Rhodochrosite + Quartz = Pyroxmangite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{11.765}}{T} + 18.618. \hfill \\ {\text{Rhodochrosite + Pyroxmangite = Tephroite + CO}}_2 \hfill \\ {\text{ log}}_{{\text{10}}} K^{{\text{2000 bars}}} = - \frac{{7.083}}{T} + 11.870. \hfill \\ \end{gathered}$$ which can be used to derive data for the remaining two reactions among the phases under consideration. Field data from the Alps are in agreement with the metamorphic sequence resulting from the experiments.  相似文献   

10.
Oxygen diffusion in albite has been determined by the integrating (bulk 18O) method between 750° and 450° C, for a P H2O of 2 kb. The original material has a low dislocation density (<106 cm?2), and its lattice diffusion coefficient (D 1), given below, agrees well with previous determinations. A sample was deformed at high temperature and pressure to produce a uniform dislocation density of 5 × 109 cm?2. The diffusion coefficient (D a) for this deformed material, given below, is about 0.5 and 0.7 orders of magnitude larger than D 1 at 700° and 450° C, respectively. This enhancement is believed due to faster diffusion along the cores of dislocations. Assuming a dislocation core radius of 4 Å, the calculated pipe diffusion coefficient (D p), given below, is about 5 orders of magnitude larger than D 1. These results suggest that volume diffusion at metamorphic conditions may be only slightly enhanced by the presence of dislocations. $$\begin{gathered} D_1 = 9.8 \pm 6.9 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 33.4 \pm 0.6(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_a = 7.6 \pm 4.0 \times 10^{ - 6} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 30.9 \pm 1.1(kcal/mole)/RT] \hfill \\ \end{gathered} $$ $$\begin{gathered} D_p \approx 1.2 \times 10^{ - 1} (cm^2 /\sec ) \hfill \\ {\text{ }} \cdot \exp [ - 29.8(kcal/mole)/RT]. \hfill \\ \end{gathered} $$   相似文献   

11.
Oxygen Fugacity measurements were carried out on chromites from the Eastern Bushveld Complex (Maandagshoek) and are compared with former measurements on chromites from the western Bushveld Complex (Zwartkop Chrome Mine). These results together with those of Hill and Roeder (1974) yield the following conditions of formation for the massive chromitite layers: Western Bushveld Complex (Zwartkop Chrome Mine) $$\begin{gathered} Layer{\text{ }}T(^\circ C) p_{O_2 } (atm) \hfill \\ LG3{\text{ 1160}} - {\text{1234 10}}^{ - {\text{5}}} - 10^{ - 7.6} \hfill \\ LG4{\text{ 1175}} - {\text{1200 10}}^{ - 6.35} - 10^{ - 7.20} \hfill \\ LG6{\text{ 1162}} - {\text{1207 10}}^{ - 6.20} - 10^{ - 7.50} \hfill \\ \hfill \\ \end{gathered} $$ Eastern Bushveld Complex (Farm Maandagshoek) $$\begin{gathered} {\text{LXI 1115}} - {\text{1150 10}}^{ - 7.80} - 10^{ - 8.80} \hfill \\ ( = {\text{Steelpoort Seam)}} \hfill \\ {\text{LX 1125 10}}^{ - 8.25} \hfill \\ {\text{V 1120 10}}^{ - 8.55} \hfill \\ {\text{LII 1120 10}}^{ - 8.0} - 10^{ - 8.60} \hfill \\ \end{gathered} $$ The comparison of the data shows, that the chronitite layers within each particular sequence were formed under approximately identicalp o 2- andT-conditions. The chromites from the western Bushveld Complex, however, were formed at higher temperatures and higher oxygen fugacities than the chromites from the eastern Bushveld Complex. Fromp o 2-T-curves of disseminated chromites and the temperatures derived above, the following conditions of formation for the host rocks were obtained: Western Bushveld Complex $$T = 1200^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 7.25} - 10^{ - 7.50} $$ Eastern Bushveld Complex $$T = 1125^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 8.50} - 10^{ - 9.25} $$ Consequently, the host rocks in the Zwartkop-Chrome-Mine, were formed under higher temperatures and higher oxygen fugacities than the host rocks at Maandagshoek. The rock sequence in the Zwartkop-Chrome-Mine therefore originated in an earlier stage of the differentiation of the Bushveld magma. Comparison of the chromites from the host rocks with the chromites from massive layers supports Ulmer's (1969) thesis that an increase of the oxygen fugacity is responsible for the formation of massive chromitite layers. The values in this investigation show that increases of only about 0.5–1.0 log units are necessary to enhance chromitite layer formation.  相似文献   

12.
In a regional metamorphic terrain where six isograds have been mapped based on mineral reactions that are observed in metacarbonate rocks, the P-T conditions and fugacities of CO2 and H2O during metamorphism were quantified by calculations involving actual mineral compositions and experimental data. Pressure during metamorphism was near 3,500 bars. Metamorphic temperatures ranged from 380° C (biotite-chlorite isograd) to 520° C (diopside isograd). \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{CO}}_{\text{2}} }\) / \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) in general is higher in metacarbonate rocks below the zoisite isograd than in those above the zoisite isograd. Calculated \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are consistent with carbonate rocks above the zoisite isograd having equilibrated during metamorphism with a bulk supercritical fluid in which \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) = P total. Calculations indicate that below the zoisite isograd, however, \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) was less than Ptotal, and that this condition is not due to the presence of significant amounts of species other than CO2 and H2O in the system C-O-H-S. Calculated \(P_{{\text{CO}}_{\text{2}} }\) /( \(P_{{\text{CO}}_{\text{2}} }\) + \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) ) is low (0.06–0.32) above the zoisite isograd. The differences in conditions above and below the zoisite isograd may indicate that the formation of zoisite records the introduction of a bulk supercritical H2O-rich fluid into the metacarbonates. The results of the study indicate that \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) are constant on a thin section scale, but that gradients in \(f_{{\text{CO}}_{\text{2}} }\) and \(f_{{\text{H}}_{\text{2}} {\text{O}}}\) existed during metamorphism on both outcrop and regional scales.  相似文献   

13.
Partitioning of Mg and Fe between coexisting biotite and orthopyroxene has been experimentally determined at temperatures 700, 750 and 800° C and 490 MPa total pressure in the system KAlO2-MgO-FeO-SiO2-H2O. Oxygen fugacity was controlled by the QFM buffer. Starting materials were synthetic minerals of differing Fe/(Fe+Mg) values. Run products were analyzed for partitioning of components by a microprobe. Orthopyroxene was established to be notably inhomogeneous, whereas biotite was essentially homogeneous. To establish equilibrium relations, statistical treatment of the results of each experiment in addition to the whole complex of experimental data was applied. The regression equations for isotherms of the Fe-Mg partitioning between the minerals studied have been obtained. As a result, the equation for a two-dimensional regression may be written as: $$\begin{gathered} Y = (A + A_1 t + A_2 t^2 )(X - X^4 ) + (B + B_1 t + B_1 t^2 )(X^2 - X^4 ) + \hfill \\ (C + C_1 t + C_1 t^2 )(X^3 - X^4 ) + X^4 {\text{ where }}Y = X_{{\text{Opx}}}^{{\text{Fe}}} ;{\text{ X}} = {\text{X}}_{{\text{Bi}}}^{{\text{Fe}}} ; \hfill \\ t = 1000/T,K, \hfill \\ \begin{array}{*{20}c} {A = {\text{ }}4.59398,} & {A_1 = - {\text{ }}8.29838,} & {A_2 = {\text{ }}4.97316,} \\ {B = - 11.13731,} & {B_1 = {\text{ }}28.19304,} & {B_2 = - 20.98240,} \\ {A = {\text{ }}8.25072,} & {C_1 = - 20.80485,} & {C_2 = {\text{ }}15.35967} \\ \end{array} \hfill \\ {\text{ }}\sigma = 0.0143{\text{ }} \hfill \\ \end{gathered}$$ . This equation enables extrapolation of partitioning isotherms over a wide range of temperatures.  相似文献   

14.
The experimental distribution coefficient for Ni/ Fe exchange between olivine and monosulfide (KD3) is 35.6±1.1 at 1385° C, \(f_{{\text{O}}_{\text{2}} } = 10^{ - 8.87} ,f_{{\text{S}}_{\text{2}} } = 10^{ - 1.02} \) , and olivine of composition Fo96 to Fo92. These are the physicochemical conditions appropriate to hypothesized sulfur-saturated komatiite magma. The present experiments equilibrated natural olivine grains with sulfide-oxide liquid in the presence of a (Mg, Fe)-alumino-silicate melt. By a variety of different experimental procedures, K D3 is shown to be essentially constant at about 30 to 35 in the temperature range 900 to 1400° C, for olivine of composition Fo97 to FoO, monosulfide composition with up to 70 mol. % NiS, and a wide range of \(f_{{\text{O}}_{\text{2}} } \) and \(f_{{\text{S}}_{\text{2}} } \) .  相似文献   

15.
This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in $ f_{{{\text{O}}_{2} }} $ of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} $ . Upon magnetite saturation, the $ f_{{{\text{O}}_{2} }} $ and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} $ . Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of $ \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille $ at 900–1,000?°C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.  相似文献   

16.
Hydrothermal reversal experiments have been performed on the upper pressure stability of paragonite in the temperature range 550–740 ° C. The reaction $$\begin{gathered} {\text{NaAl}}_{\text{3}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{1 0}}} ({\text{OH)}}_{\text{2}} \hfill \\ {\text{ paragonite}} \hfill \\ {\text{ = NaAlSi}}_{\text{2}} {\text{O}}_{\text{6}} + {\text{Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}} \hfill \\ {\text{ jadeite kyanite vapour}} \hfill \\ \end{gathered}$$ has been bracketed at 550 ° C, 600 ° C, 650 ° C, and 700 ° C, at pressures 24–26 kb, 24–25.5 kb, 24–25 kb, and 23–24.5 kb respectively. The reaction has a shallow negative slope (? 10 bar °C?1) and is of geobarometric significance to the stability of the eclogite assemblage, omphacite+kyanite. The experimental brackets are thermodynamically consistent with the lower pressure reversals of Chatterjee (1970, 1972), and a set of thermodynamic data is presented which satisfies all the reversal brackets for six reactions in the system Na2O-Al2O3-SiO2-H2O. The Modified Redlich Kwong equation for H2O (Holloway, 1977) predicts fugacities which are too high to satisfy the reversals of this study. The P-T stabilities of important eclogite and blueschist assemblages involving omphacite, kyanite, lawsonite, Jadeite, albite, chloritoid, and almandine with paragonite have been calculated using thermodynamic data derived from this study.  相似文献   

17.
The equilibrium constants for the reaction (2) Rhodochrosite + Quartz=Pyroxmangite+CO2 obtained are:logK(2)(bars)= $$\begin{gathered}{\text{log}}f_{co_2 } = - \frac{{(9862 \pm 102)}}{T} \hfill \\+ (15.887 \pm 0.220) + (0.1037 \pm 0.0020)\frac{{P - 1}}{T} \hfill \\\end{gathered} $$ and for the reaction (3) Rhodochrosite+Pyroxmangite=Tephroite+CO2: logK(3)(bars)= $$\begin{gathered}{\text{log}}f_{co_2 } = - \frac{{(6782 \pm 205)}}{T} \hfill \\+ (11.296 \pm 0.304) + (0.0835 \pm 0.0030)\frac{{P - 1}}{T} \hfill \\\end{gathered} $$ The present data lie within reasonable limits of error of the values calculated from previous experimental results at P tot = 2000 bars.  相似文献   

18.
The effective binary diffusion coefficient (EBDC) of silicon has been measured during the interdiffusion of peralkaline, fluorine-bearing (1.3 wt% F), hydrous (3.3 and 6 wt% H2O), dacitic and rhyolitic melts at 1.0 GPa and temperatures between 1100°C and 1400°C. From Boltzmann-Matano analysis of diffusion profiles the diffusivity of silicon at 68 wt% SiO2 can be described by the following Arrhenius equations (with standard errors): $$\begin{gathered} {\text{with 1}}{\text{.3 wt\% F and 3}}{\text{.3\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.66}} \times {\text{10}}^{ - {\text{9}}} } \\ { - {\text{1}}{\text{.86}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{86}}{\text{.1}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ {\text{with 1}}{\text{.3 wt\% F and 6}}{\text{.0\% H}}_{\text{2}} {\text{O:}} \hfill \\ {\text{D}}_{{\text{Si}}} = \begin{array}{*{20}c} { + {\text{3}}{\text{.59}}} \\ {{\text{3}}{\text{.51}} \times {\text{10}}^{ - {\text{8}}} } \\ { - {\text{1}}{\text{.77}}} \\ \end{array} {\text{exp}}\left( {{{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} \mathord{\left/ {\vphantom {{ - {\text{109}}{\text{.5}} \pm {\text{8}}{\text{.9}}} {{\text{RT}}}}} \right. \kern-\nulldelimiterspace} {{\text{RT}}}}} \right) \hfill \\ \end{gathered} $$ where D is in m2s?1 and activation energies are in kJ/mol. Diffusivities measured at 64 and 72 wt% SiO2 are only slightly different from those at 68 wt% SiO2 and frequently all measurements are within error of each other. Silicon, aluminum, iron, magnesium, and calcium EBDCs were also calculated from diffusion profiles by error function inversion techniques assuming constant diffusivity. With one exception, silicon EBDCs calculated by error function techniques are within error of Boltzmann-Matano EBDCs. Average diffusivities of Fe, Mg, and Ca were within a factor of 2.5 of silicon diffusivities whereas Al diffusivities were approximately half those of silicon. Alkalies diffused much more rapidly than silicon and non-alkalies, however their diffusivities were not quantitatively determined. Low activation energies for silicon EBDCs result in rapid diffusion at magmatic temperatures. Assuming that water and fluorine exert similar effects on melt viscosity at high temperatures, the viscosity can be calculated and used in the Eyring equation used to determine diffusivities, typically to within a factor of three of those measured in this study. This correlation between viscosity and diffusivity can be inverted to calculate viscosities of fluorine- and water-bearing granitic melts at magmatic temperatures; these viscosities are orders of magnitude below those of hydrous granitic melts and result in more rapid and effective separation of granitic magmas from partially molten source rocks. Comparison of Arrhenius parameters for diffusion measured in this study with Arrhenius parameters determined for diffusion in similar compositions at the same pressure demonstrates simple relationships between Arrhenius parameters, activation energy-Ea, kJ/mol, pre-exponential factor-Do, m2s?1, and the volatile, X=F or OH?, to oxygen, O, ratio of the melt {(X/X+O)}: $$\begin{gathered} {\text{E}}a = - {\text{1533\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }} + {\text{213}}{\text{.3}} \hfill \\ {\text{D}}_{\text{O}} = {\text{2}}{\text{.13}} \times {\text{10}}^{ - {\text{6}}} {\text{exp}}\left[ { - {\text{6}}{\text{.5\{ }}{{\text{X}} \mathord{\left/ {\vphantom {{\text{X}} {\left( {{\text{X}} + {\text{O}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {{\text{X}} + {\text{O}}} \right)}}{\text{\} }}} \right] \hfill \\ \end{gathered} $$ These relationships can be used to estimate diffusion in various melts of dacitic to rhyolitic composition containing both fluorine and water. Calculations for the contamination of rhyolitic melts by dacitic enclaves at 800°C and 700°C provide evidence for the virtual inevitability of diffusive contamination in hydrous and fluorine-bearing magmas if they undergo magma mixing of any form.  相似文献   

19.
Elastic constants of single crystal MgO have been measured by the rectangular parallelepiped resonance (RPR) method at temperatures between 80 and 1,300 K. Elastic constants C ij (Mbar=103 kbar) and their temperature coefficients (kbar/K) are: $$\begin{gathered} {\text{ }}C_{{\text{11}}} {\text{ }}C_{{\text{12}}} {\text{ }}C_{{\text{44}}} {\text{ }}K_s {\text{ }}C_s \hfill \\ C_{ij} {\text{ 300 K 2}}{\text{.966 0}}{\text{.959 1}}{\text{.562 1}}{\text{.628 1}}{\text{.004}} \hfill \\ \partial C_{ij} {\text{/}}\partial T{\text{100 K }} - {\text{0}}{\text{.259 0}}{\text{.013 }} - {\text{0}}{\text{.072 }} - {\text{0}}{\text{.078 }} - {\text{0}}{\text{.136}} \hfill \\ {\text{ 300K }} - {\text{0}}{\text{.596 0}}{\text{.068 }} - {\text{0}}{\text{.122 }} - {\text{0}}{\text{.153 }} - {\text{0}}{\text{.332}} \hfill \\ {\text{ 800 K }} - {\text{0}}{\text{.619 0}}{\text{.009 }} - {\text{0}}{\text{.152 }} - {\text{0}}{\text{.200 }} - {\text{0}}{\text{.314}} \hfill \\ {\text{ 1,300 K }} - {\text{0}}{\text{.598 0}}{\text{.036 }} - {\text{0}}{\text{.130 }} - {\text{0}}{\text{.223 }} - {\text{0}}{\text{.218}} \hfill \\ \end{gathered} $$ By combining the present results with the previous data on the thermal expansivity and specific heat, the thermodynamic properties of magnesium oxide are presented and discussed. The elastic parameters of MgO at very high temperatures in the earth's lower mantle are also clarified.  相似文献   

20.
The ferric-ferrous ratio of natural silicate liquids equilibrated in air   总被引:1,自引:1,他引:1  
Results of chemical analyses of glasses produced in 46 melting experiments in air at 1,350° C and 1,450° C on rocks ranging in composition from nephelinite to rhyolite have been combined with other published data to obtain an empirical equation relating in \((X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{liq}}} /X_{{\text{FeO}}}^{{\text{liq}}} )\) to T, \(\ln f_{{\text{O}}_{\text{2}} } \) and bulk composition. The whole set of experimental data range over 1,200–1,450° C and oxygen fugacities of 10?9.00 to 10?0.69 bars, respectively. The standard errors of temperature and \(\log _{10} f_{{\text{O}}_{\text{2}} } \) predictions from this equation are 52° C and 0.5 units, respectively, for 186 experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号