首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
A new formulation for the propagation of surface waves in three-dimensionally varying media is developed in terms of modal interactions. A variety of assumptions can be made about the nature of the modal field: a single set of reference modes, a set of local modes for the structure beneath a point, or a set of local modes for a laterally varying reference structure. Each modal contribution is represented locally as a spectrum of plane waves propagating in different directions in the horizontal plane. The influence of 3-D structure is included by allowing coupling between different modal branches and propagation directions. For anisotropic models, with allowance for attenuation, the treatment leads to a set of coupled 2-D partial differential equations for the weight functions for different modal orders.
The representation of the guided wavefield requires the inclusion of a full set of modes, so that, even for isotropic models, both Love and Rayleigh modes appear as different polarization states of the modal spectrum. The coupling equations describe the interaction between the different polarizations induced by the presence of the 3-D structure.
The level of lateral variation within the 3-D model is not required to be small. Horizontal refraction or reflection of the surface wavefield can be included by allowing for transfer between modes travelling in different directions. Approximate forms of the coupled equation system can be employed when the level of heterogeneity is small, for example the coupling between the fundamental mode and higher modes can often be neglected, or forward propagation can be emphasized by restricting the interaction to a limited band of plane waves covering the expected direction of propagation.  相似文献   

8.
9.
10.
The characteristics of a reflected spherical wave at a free surface are investigated by numerical methods; in particular, the polarization angles and amplitude coefficients of a reflected spherical wave are studied. The classical case of the reflection of a plane P wave from a free surface is revisited in order to establish our terminology, and the classical results are recast in a way which is more suited for the study undertaken. The polarization angle of a plane P wave, for a given angle of incidence, is shown to be 90° minus twice the angle of reflection of the reflected S wave. For a Poisson's ratio less than 1/3, there is a non-normal incident angle for which both amplification coefficients are 2 precisely; for this incident angle the direction of the particle motion at the free surface is also the direction of the incident wave. For a wave emanating from a spherical source, the polarization angle, for all angles of incidence, is always less than, or equal to, the polarization angle of a plane P wave. The vector amplification coefficient of a spherical wave, for all angles of incidence, is always greater than the vector amplification coefficient of a plane P wave. As expected, the results for a spherical wave approach the results for a plane P wave in the far field. Furthermore, there was a good agreement between the theoretical modelling and the numerical modelling using the dynamic finite element method (DFEM).  相似文献   

11.
Rayleigh waves in isotropic viscoelastic media   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
Freezing and thawing during the winter season change soil properties such as density. The density change in the particulate media influences soil stiffness. In addition, freezing of partially or fully saturated soils changes the soil matrix from a particulate media to a continuum. The goal of this study is to investigate the cyclic freezing and thawing effects on elastic waves. Sand-silt mixtures with 10% silt fraction in weight and 40% saturation are prepared. The sand-silt mixtures are placed in a nylon cell, onto which a pair of bender elements and a pair of piezoelectric disk elements are installed for the measurement of shear and compressional waves, respectively. The temperature of the mixtures decreases from 20°C to 10°C to freezing. The frozen sample is gradually thawed at room temperature (20°C). These freezing-thawing processes are repeated three times. The test result shows that the shear and compressional wave velocities significantly increase when the specimen is frozen. When the temperature is greater than 0°C, the elastic wave velocities are lower during thawing than during freezing due to soil structure change. This study demonstrates that soil structure change during the winter season may be effectively estimated from elastic waves.  相似文献   

14.
15.
16.
17.
18.
19.
We present a complete ray theory for the calculation of surface-wave observables from anisotropic phase-velocity maps. Starting with the surface-wave dispersion relation in an anisotropic earth model, we derive practical dynamical ray-tracing equations. These equations allow calculation of the observables phase, arrival-angle and amplitude in a ray theoretical framework. Using perturbation theory, we also obtain approximate expressions for these observables. We assess the accuracy of the first-order approximations by using both theories to make predictions on a sample anisotropic phase-velocity map. A comparison of the two methods illustrates the size and type of errors which are introduced by perturbation theory. Perturbation theory phase and arrival-angle predictions agree well with the exact calculation, but amplitude predictions are poor. Many previous studies have modelled surface-wave propagation using only isotropic structure, not allowing for anisotropy. We present hypothetical examples to simulate isotropic modelling of surface waves which pass through anisotropic material. Synthetic data sets of phase and arrival angle are produced by ray tracing with exact ray theory on anisotropic phase-velocity maps. The isotropic models obtained by inverting synthetic anisotropic phase data sets produce deceptively high variance reductions because the effects of anisotropy are mapped into short-wavelength isotropic structure. Inversion of synthetic arrival-angle data sets for isotropic models results in poor variance reductions and poor recovery of the isotropic part of the anisotropic input map. Therefore, successful anisotropic phase-velocity inversions of real data require the inclusion of both phase and arrival-angle measurements.  相似文献   

20.
Surface waves in layered anisotropic structures   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号