首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Establishment of water quality criteria to guide catchment sediment management is required by the European Union (EU) Water Framework Directive. The topic, however, is hotly contested among scientists and policy makers. Existing legislation with regard to fine sediment was set by the EU Freshwater Fish Directive. Its guideline, i.e. mean annual suspended sediment concentration, is 25 mg l−1. Such a static target fails to capture the episodic nature of sediment transport. Furthermore, application of such global standards is inappropriate for a pollutant that is strongly controlled by spatial variation in key catchment drivers. Paleolimnology offers an approach for assessing background sediment pressures on watercourses, enabling determination of values for times pre-dating agricultural intensification. We propose that Modern Background Sediment Delivery to Rivers (MBSDR) across England and Wales can be determined using paleolimnology to quantify maximum feasible sediment reduction. No management programme should aim to reduce sediment loss to values below those resulting from background, natural physiographic and/or hydrological controls. Lacking generic tools to quantify process linkages between sediment pressures and biological impact, we propose that MBSDR could be taken to represent ecological demand for sediment inputs into watercourses required to support healthy aquatic habitats. In situations where generic tools exist for coupling sediment pressures and ecological impacts, assessment of MBSDR could be used to correct the gap between current or future projected sediment loss and biological condition. Existing paleolimnological data on sediment yields across England and Wales are presented to illustrate the approach and provide preliminary national estimates of MBSDR. We briefly consider the basis for reconstructing sediment yields using a paleolimnological approach and analyse temporal trends in published sediment yield, inferred for a range of landscape types. We also attempt to correlate sediment accumulation rates (SARs) with sediment yields to extend the MBSDR data base. Preliminary maps were generated to identify regions where further sediment yield data are needed to produce a more robust estimate of the spatial distribution of MBSDR across England and Wales.  相似文献   

2.
In this paper we assess the ways in which the topography of glaciated northern Britain has affected the siting and operations of water mills, and compare those factors and mill locations for mills in unglaciated southern Britain. We then explore the impacts of these findings on the potential downstream impacts of mill dam failure.We used a GIS to plot the locations of all 1712 localities in Britain's Ordnance Survey Gazetteer that include “mill”, “milton” (‘milltown’) and “miln” in their name. We then examined the geomorphology of mill locations in two study areas, one in northeast Scotland (glaciated; 421 localities) and one in southern England (unglaciated; 438 localities), assessing (i) mill location within the drainage net, and (ii) the steepness of an adjacent stream within a radius of 500 m of the mill locality. The large majority of mills are located within the first 10 km of the drainage net in both study areas, presumably on relatively stable bedrock channels. The data for most of the mills in both study areas indicate that catchment areas of less than 200 km2 are sufficient to supply the water necessary for operation of a mill, but the higher rainfalls and runoff in Scotland (almost twice the values in the England study area) mean that mill dams in S England must have been higher and of higher capacity than those in NE Scotland. That finding is consistent with the results related to channel steepness, which show that mills in Scotland are associated with steeper channels than is the case in England. The generally greater channel steepness in Scotland (and the greater downstream extent of those steeper channels, as also confirmed by the data) reflect both the many glacially steepened bedrock channel reaches in Scotland and the steepening of Scotland's coastal bedrock channels as a result of glacio-isostatic rebound.The technical requirements of water mill operation favour situations where water can be delivered to the top of, or at least part-way up, the mill wheel. Scotland's steeper rivers and its higher rainfalls mean that Scotland's mills require smaller mill dams, if they are needed at all. It would therefore be expected that catastrophic or managed failure of mill dam walls in northern Britain would release lower volumes of trapped sediment to the downstream fluvial system. These lower volumes would in turn result in lower geomorphological impacts downstream of the dam, both in terms of changing channel patterns and burial of the bed. Such dam failure is a key current issue in geomorphology and one case study of a small failed mill dam in western Scotland confirms the minimal downstream impacts of that failure.  相似文献   

3.
A landslide-hazard map is intended to show the location of future slope instability. Most spatial models of the hazard lack reliability tests of the procedures and predictions for estimating the probabilities of future landslides, thus precluding use of the maps for probabilistic risk analysis. To correct this deficiency we propose a systematic procedure comprising two analytical steps: “relative-hazard mapping” and “empirical probability estimation”. A mathematical model first generates a prediction map by dividing an area into “prediction” classes according to the relative likelihood of occurrence of future landslides, conditional by local geomorphic and topographic characteristics. The second stage estimates empirically the probability of landslide occurrence in each prediction class, by applying a cross-validation technique. Cross-validation, a “blind test” here using non-overlapping spatial or temporal subsets of mapped landslides, evaluates accuracy of the prediction and from the resulting statistics estimates occurrence probabilities of future landslides. This quantitative approach, exemplified by several experiments in an area near Lisbon, Portugal, can accommodate any subsequent analysis of landslide risk.  相似文献   

4.
Scaled chrysophytes in the surface sediments of 58 soft-water northern New England lakes were analyzed to assess their usefulness for inferring pH. The distributions of many taxa are correlated with lakewater pH and associated variables. Canonical correspondence analysis (CCA) and clustering grouped chrysophyte taxa according to their distributions along the pH gradient. For example, Chrysodidymus synuroideus, Mallomonas hindonii, and M. hamata commonly occur in acidic waters (pH<5.5), whereas M. caudata and M. pseudocoronata are common in circumneutral to alkaline waters. Of the five predictive models developed to infer pH, CCA based calibration had the lowest standard error (0.35 pH units). A CCA based predictive model was also developed to infer total alkalinity. The study provides strong evidence that, in the absence of past measured pH data, stratigraphic studies of sedimentary chrysophyte scales will provide accurate reconstructions of pH in northern New England lakes.This is the sixth of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D.F. Charles and D.R. Whitehead are guest editors for this series.  相似文献   

5.
The awareness of water quality issues has never been higher. As part of its continuing strategic diffuse pollution policy support, ADAS recently undertook to identify catchments across England and Wales that could potentially fail recently proposed suspended sediment yield targets under current environmental conditions. The total suspended sediment loads (SSL) delivered to all rivers were assumed to comprise contributions from diffuse sources in the agricultural and urban sectors, as well as from eroding channel banks and point sources represented by sewage treatment works (STWs). Diffuse agricultural sediment loss to rivers was predicted using the PSYCHIC model. Corresponding inputs from diffuse urban sources were estimated on the basis of an Event Mean Concentration (EMC) methodology. Channel bank sediment inputs were calculated using a prototype national scale model, while point source sediment contributions were based on a register of consented effluent discharges. Modelled SSL were validated (r2=68%) against PARCOM data (1999–2003) for the delivery of sediment to different regions of the UK maritime area. The results of the validation were considered to be realistic for a national scale predictor. The modelling exercise suggested that those catchments currently at risk of exceeding proposed suspended sediment yield critical thresholds are largely confined to upland areas across Wales and northwest England and the chalklands of southern and eastern England.  相似文献   

6.
This paper examines the wartime literature of Sarah Selwyn, Mary Ann Martin, and Caroline Abraham, all wives of prominent church and government men in colonial Aotearoa/New Zealand. Along with their husbands these women became leading participants in the “pamphlet war” surrounding the justice and legality of the colonial government's survey and confiscation of Māori land at Taranaki, c. 1850–1860. I analyze the socio‐spatial frameworks of these colonial women, linking them with their protest narratives of the Taranaki confiscations and ensuing war. The anti‐colonial position articulated by these women must be viewed within the context of ideological constraints on women's participation in public life, but also within the context of expanded social and spatial boundaries of such high‐placed colonials, the gendered space of the episcopal residences during wartime, the women's networks of communication, and their material and discursive links to public arguments taking place in England over colonial conflicts.  相似文献   

7.
8.
The change in dissolved inorganic δ13C in the ocean resulting from the change in δ13C in atmospheric CO2 owing to anthropogenic activities (the Suess effect) is well known. The need to correct for the Suess effect when applying δ13C in organic matter in lacustrine sediment deposited during the anthropocene as a productivity proxy, is widely although not universally acknowledged. This paper reviews conceptions about the Suess effect in lacustrine δ13Corg and methods to adjust for the Suess effect when δ13Corg is used to infer recent changes in aquatic productivity. Lake Tanganyika is used as an example to illustrate the necessity of the correction. When the Suess effect is not considered, interpretations of sediment core data can result that are opposite to those achieved with the correction applied, as is here shown in Lake Tanganyika and in other lakes. A new method to correct for the Suess effect is provided which has the advantage of being applicable to data for a larger period (1700–2000) than methods currently available. In addition, Lake Tanganyika is shown to be a net sink for CO2.  相似文献   

9.
Summary. The statistical capability of the m b: M s discriminant for the discrimination of earthquake and explosion populations is examined by application of discriminant functions to a group of 83 explosions and 72 earthquakes in Eurasia. Equations are derived for the probability that an event is an earthquake or an explosion. The positive sign of DIS in the decision index equation, DIS i = 34.3383 – 11.9569 mb t + 7.1161 M si , indicates that the event i is an earthquake. Its negative sign indicates that event i is an explosion. The probability of correct classification for an event, P i , is related to its DIS i value, by P i = [1-exp (DIS i )]−1, where a large, positive DIS indicates a high probability that an event is an earthquake and a large, negative DIS indicates a high probability that an event is an explosion. The discrimination line M s = 1.680 m b– 4.825, or m b= 0.595 M s+ 2.872 very successfully separates the explosion population from the earthquake population. The points on this line have an equal chance of being an earthquake or an explosion; moreover, for any event, the distance parallel to the M s-axis from the point representing that event in the m b: M s plane to this line is a measure of the probability for the correct classification of that event.  相似文献   

10.
《Basin Research》2018,30(Z1):36-47
Radioisotope geochronology of detrital grains coupled with quantitative classification of grain morphology can provide valuable insight into the history of sediment transportation and recycling. Here we present ca. 750 new concordant U‐Pb ages from detrital zircon grains from a relatively understudied Permian sedimentary succession in the New England Orogen (eastern Australia), coupled with values of abrasion that provides a proxy for the relative source‐to‐sink distance. We show that cumulative proportion curves for age groups that correspond to plausible source regions provide insights into the palaeodrainage, even if the basin stratigraphy is relatively poorly constrained. This approach is particularly suitable for investigating complex depositional systems that received inflow from different provenance, such as back‐arc and intra‐cratonic basins. Using the example from eastern Australia, our results show that during the Early Permian, a large regional fluvial system transported detritus from continental Gondwana across the landscape of the former active continental margin (New England Orogen) and the simultaneously developing East Australian Rift System. In addition, a local drainage system mobilised detritus within the New England Orogen. Our new constraints for the Early Permian palaeogeography support the idea that the Lower Permian successions of the southern New England Orogen were deposited in a back‐arc region that was likely linked to a retreating subduction zone.  相似文献   

11.
In 1969, prior to the discovery of the subglacial Lake Vostok, an Askania Gs-11 gravimeter was operated at Vostok Station (78.466°S, 106.832°E; 3478 m asl) to observe tidal gravity variations. To gain a better understanding of the lake's tidal dynamics, we reanalyzed these data using a Bayesian Tidal Analysis Program Grouping method (BAYTAP-G and -L programs). The obtained phase leads for the semidiurnal waves M2 (6.6 ± 2.1°) and S2 (10.1 ± 4.2°) are more pronounced than those of the diurnal waves, among which the largest phase lead (for K1) was 5.0 ± 0.5°. The obtained δ factor for M2 was 0.890 ± 0.032, significantly less than the theoretical value of 1.16. For three global ocean tide models (NAO99b, FES2004, and TPXO6.2), the estimated load tides on waves Q1, O1, P1, K1, M2, and S2 range from 0.1–0.2 μGal (Q1 and S2) to 0.6–0.7 μGal (K1). The difference in amplitude among the three models is less than 0.14 μGal (M2), and the difference in phase is generally less than 10°. In calculating the residual tide vectors using the ocean models, the TPXO6.2 model generally gave the smallest residual amplitudes. Our result for the K1 wave was anomalously large (1.36 ± 0.25 μGal), while that for the M2 wave was sufficiently small (0.37 ± 0.17 μGal). The associated uncertainty is half that reported in previous studies. It is interesting that the residual K1 tide is approximately 90° phase-leaded, while the M2 tide is approximately 180° phase-leaded (delayed). Importantly, a similar reanalysis of data collected at Asuka Station (71.5°S, 24.1°E) gave residual tides within 0.2–0.3 μGal for all major diurnal and semidiurnal waves, including the K1 wave. Therefore, the anomalous K1 residual tide observed at Vostok Station must be linked to the existence of the subglacial lake and the nature of solid–ice–water dynamics in the region.  相似文献   

12.
《Geomorphology》2007,83(1-2):183-192
Wind-splash is a process in which wind and rain combine to cause soil erosion. In upland Britain, the conditions necessary for wind-splash erosion are relatively common and frequently occur in locations where blanket peat is an important land cover. A typical location is Moss Flats (North Pennines, northern England, UK). Wind-splash processes were monitored intensively at this site over 3 months using a circular configuration of mass flux sediment samplers, and meteorological data logged from an on-site automatic weather station. Maximum peat flux rates were measured between south-southwest and west-northwest directions in association with relatively moderate intensity, frontal rainfall, typically 4–6 mm h 1. Wind-splash processes operate in any direction due to changeable synoptic weather patterns. Windward peat fluxes were typically 2–13 times greater than those recorded at leeward orientations. Spatial patterns of erosion are reflected in the wider landscape through the development of small-scale, erosional landforms (peat hags), which frequently display preferred orientations within the range of maximum peat flux. It is suggested that wind-splash may be a more important process of peat erosion than hitherto reported in UK upland areas.  相似文献   

13.
Heavy metal storage in near channel sediments of the Lahn River, Germany   总被引:4,自引:0,他引:4  
Charles W. Martin   《Geomorphology》2004,61(3-4):275-285
Heavy metal pollution in urban, industrial, and mined watersheds of Europe is well documented, but less is known about metal contamination in agrarian watersheds or those with no history of mining. Along a 75-km reach of the Lahn River, central Germany, near-channel flood-plain sediments (<5 m from the active channel) have mean concentrations of Cd, Cu, Pb, and Zn that exceed background values. Vertically, metal concentrations are highest at 15 or 20 cm below the flood plain. Although mean metal concentrations in the watershed are below mean values found in more industrial watersheds of western Europe, individual near-channel sites along the Lahn River have metal concentrations approaching those found in more urbanized drainage basins. Several sites along the Lahn are “excessively contaminated” with Cd and “moderately/strongly” contaminated with Cu, Pb, and Zn. Metal concentrations are generally higher and more variable downstream from metal-producing locations and in the vicinity of industrial facilities. Topographic and geomorphic factors appear to have minimal influence on near-channel metal concentrations. The elevated concentrations of metals in geomorphically sensitive channel banks and near-channel sediments raise the possibility of future metal pollution in the Lahn River watershed even as metal emissions to the environment decline.  相似文献   

14.
Exertional heat illnesses affect thousands of athletes each year across the United States (U.S.). Heat safety guidelines such as those developed by the American College of Sports Medicine (ACSM) are widely used to direct activities based on environmental conditions but rely on a uniform set of heat safety categories. Due to geographic variations in heat exposure and acclimatization, however, lower heat safety thresholds may be needed in areas with cooler climates. Our study addresses this shortcoming by developing regional guidelines for athletic activity that use relative thresholds of a commonly used heat metric -- the wet bulb globe temperature (WBGT). We employed a unique WBGT climatology for the contiguous U.S. to determine locally extreme WBGTs, defined as the 90th percentile warm season daily maximum value, for 217 stations. Three heat safety regions were identified based on local extremes: Category 3 (WBGTs ≥ 32.3 °C), Category 2 (30.1–32.2 °C), and Category 1 (≤30 °C). Geographically, Category 3 encompasses much of the southeastern quadrant of the U.S. along with portions of the Southwest, and the Central Valley of California; Category 2 areas extend in an arc from the interior Northwest through Nevada and portions of the Midwest, Ohio Valley, and Northeast; and Category 1 locations include the Pacific Coast, New England, and the northern tier of the country. Associated regional activity guidelines based on those developed by the ACSM and the Georgia High School Association (GHSA) were developed for each heat safety region.  相似文献   

15.
Recent improvements in understanding glacial extents and chronologies in the Wasatch and Uinta Mountains and other mountain ranges in the western U.S. call for a more detailed approach to using glacier reconstructions to infer paleoclimates than commonly applied AAR-ELA-ÄT methods. A coupled 2-D mass balance and ice-flow numerical modeling approach developed by [Plummer, M.A., Phillips, F.M., 2003. A 2-D numerical model of snow/ice energy balance and ice flow for paleoclimatic interpretation of glacial geomorphic features. Quaternary Science Reviews 22, 1389–1406] allows exploration of the combined effects of temperature, precipitation, shortwave radiation and many secondary parameters on past ice extents in alpine settings. We apply this approach to the Little Cottonwood Canyon in the Wasatch Mountains and the Lake Fork and Yellowstone Canyons in the south-central Uinta Mountains. Results of modeling experiments indicate that the Little Cottonwood glacier required more precipitation during the local Last Glacial Maximum (LGM) than glaciers in the Uinta Mountains, assuming lapse rates were similar to modern. Model results suggest that if temperatures in the Wasatch Mountains and Uinta Mountains were  6 °C to 7 °C colder than modern, corresponding precipitation changes were  3 to 2× modern in Little Cottonwood Canyon and  2 to 1× modern in Lake Fork and Yellowstone Canyons. Greater amounts of precipitation in the Little Cottonwood Canyon likely reflect moisture derived from the surface of Lake Bonneville, and the lake may have also affected the mass balance of glaciers in the Uinta Mountains.  相似文献   

16.
Lead-210 methods have been used to establish a chronology of sedimentation extending back almost 80 years in Black Mountain Lagoon near Guyra on the New England Tablelands of north-eastern New South Wales, Australia. Estimates of the direct atmospheric fallout of unsupported 210Pb and historical records of the pattern of phosphorus input to the lake provide support for the 210Pb chronology. The sediments in the lake record an episode of disturbance which took place prior to c .1916, but after c .1790-1860. Since then, however, the site-specific rate of minerogenic sedimentation has been maintained at a relatively low and constant level of 0.93 kg m-2 a-1. [Note: the following symbols are used in this paper: a = year (annum), and d min-1 g-1 = radioactivity (spontaneous nuclear disintegrations per minute per gram of material).] This is despite major shifts in land use and intensification of agriculture, despite the occurrence of significant floods and droughts, and in the absence until recent times of the application of soil conservation practices. These rates may be contrasted with rates of 0.023 kg m-2 a-1 from the period 12.3-5.6 ka. These are at least an order of magnitude lower than those of the twentieth century. The lake sediments preserve evidence of the use of agricultural chemicals on the catchment during the twentieth century. These include phosphorus, zinc, arsenic and lead. Soils and sediments may act as long-term toxic stores for such chemicals, a problem often overlooked in rural areas.  相似文献   

17.
The lack of radiocarbon ages and correlated varve sequences in southeastern New England has left the deglacial chronology of the region poorly constrained. A 265-year varve series from Glacial Lake Narragansett was constructed from eight continuous sediment cores collected from the Providence River, Narragansett Bay, Rhode Island. This varve series could not be correlated with either the North American Varve Chronology or other varve sequences from southern New England or southeastern New York. The uncorrelated varve sequences presented here represent the minimum time of deposition within the northern segment of Glacial Lake Narragansett. These sequences, used in conjunction with the calibrated North American Varve Chronology and cosmogenic exposure ages from recessional end moraines, provide minimum (>19,400 cal BP) and maximum (<20,500 cal BP) ages for Glacial Lake Narragansett. Correlations with the updated Greenland (NGRIP and GRIP) ice core records suggest that cold periods associated with moraine formation are 200–250 years older than the cosmogenic exposure ages. Whereas many studies refer to the last glacial maximum occurring from 20,000 to 18,000 cal BP, the constrained age of Glacial Lake Narragansett suggests that at least for the southeastern portion of the Laurentide Ice Sheet, deglaciation was well underway by this time.  相似文献   

18.
19.
Climate change in the northeastern United States has been inferred for the last deglaciation to middle Holocene (∼16,600 to 6000 calendar years ago) using multi-proxy data (total organic matter, total carbonate content, δ18 O calcite and δ13 C calcite) from a 5 m long sediment core from Seneca Lake, New York. Much of the regional postglacial warming occurred during the well-known Bolling and Allerod warm periods (∼14.5 to 13.0 ka), but climate amelioration in the northeastern United States preceded that in Greenland by ∼2000 years. An Oldest Dryas climate event (∼15.1 to 14.7 ka) is recognized in Seneca Lake as is a brief Older Dryas (∼14.1 ka) cold event. This latter cold event correlates with the regional expansion of glacial Lake Iroquois and global meltwater pulse IA. An increase in winter precipitation and a shorter growing season likely characterized the northeastern United States at this time. The Intra-Allerod Cold Period (∼13.2 ka) is also evident supporting an “Amphi-Atlantic Oscillation” at this time. The well-known Younger Dryas cold interval occurred in the northeastern United States between 12.9 and 11.6 ka, consistent with ice core data from Greenland. In the Seneca Lake record, however, the Younger Dryas appears as an asymmetric event characterized by an abrupt, high-amplitude beginning followed by a more gradual recovery. Compared to European records, the Younger Dryas in the northeastern United States was a relatively low-amplitude event. The largest amplitude and longest duration anomaly in the Seneca Lake record occurs after the Younger Dryas, between ∼11.6 and 10.3 ka. This “post-Younger Dryas climate interval” represents the last deglacial climate event prior to the start of the Holocene in the northeastern United States, but has not been recognized in Greenland or Europe. The early to middle Holocene in the northeastern United States was characterized by low-amplitude climate variability. A general warming trend during the Holocene Hypsithermal peaked at ∼9 ka coincident with maximum summer insolation controlled by orbital parameters. Millennial- to century-scale variability is also evident in the Holocene Seneca Lake record, including the well-known 8.2 ka cold event (as well as events at ∼7.1 and 6.6 ka). Hemispherical cooling during the Holocene Neoglacial in the northeastern United States began ∼5.5 ka in response to decreasing summer insolation.  相似文献   

20.
Variations in the coupling of sediment transfer between different parts of a fluvial catchment, e.g., hillslope to axial stream, can hamper understanding but are an integral part of the geomorphological record. Depositional environments respond to a combination of land use, climate, storms (floods), and autogenic conditioning. The distribution of sediment in the upland landscapes of NW England is out of equilibrium with contemporary climate and geomorphological processes; more a function of peri- and paraglacial mobilisation of glacigenic deposits. Soil and vegetation development after deglaciation have interrupted any progression toward sediment exhaustion with sediment release controlled largely by extrinsic perturbation, with late Holocene anthropogenic activity, climate and extreme hydrological events the likely candidates. This paper presents a new radiocarbon-dated Holocene geomorphological succession for the River Hodder (NW England), alongside evaluating new palaeoecological and geoarchaeological data to discern the impacts of human activity. These data show a late Holocene expansion in human occupation and use of the landscape since the Iron Age (700–0 cal. B.C.), with more substantial changes in the character and intensity of upland land use in the last 1300 years. The geomorphological responses in the uplands were the onset of considerable and widespread hillslope erosion (gullying) and associated alluvial fan development. Interpretation of the regional radiocarbon chronology limits gullying to four, more extensive and aggressive phases after 500 cal. B.C. The downstream alluvial system has responded with considerable valley floor deposition and lateral channel migration that augmented sediment supply by remobilising the existing floodplain terraces and led to the aggradation of a series of inset alluvial terraces. The timing of these changes between states of aggradation and incision in alluvial reaches reflects the increased connectivity between the hillslope and alluvial systems. Aspects of both the regional climate and land use histories are conducive to increasing discharge and sediment flux, but the region wide lowering of erosion thresholds appears a key driver conditioning these sediment-rich conditions and producing a landscape that was more susceptible to erosion under lower magnitude flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号