首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
从Rankine-Hugoniot关系出发,以激波切向磁场ξ、上游激波角θ和等离子体β值为参数研究各类激波解的特性及相互关系,阐明各类激波强度随介质β值的变化规律.结果指出:(1)在ξ<-1的Ⅰ型中间激波区和ξ>4的快激波区存在双解;(2)慢激波可以直接和中间激波连接,但不能和快激波直接连接;(3)各类激波强度(用激波密度比衡量)随β值均有变化:Ⅰ型中间激波上支随β值增加而下降,下支则上升;Ⅰ型中间激波和慢激波都随β值增加而下降;快激波双解区上支随β值增加而下降。下支上升;快激波在1<ξ<4区间的解随β值增加而上升。  相似文献   

2.
慢激波的演化受其上游介质性质的制约,在等离子体热压与磁压之比β值和离子、电子温度比Ti/Te大于1的介质中不利于慢波变陡形成慢激波。由飞船HeliosA,B探测资料看出,在日心距0.3-1.0AU区间只有慢速太阳风流中存在有利于慢激波形成的条件。但理论计算和飞船观测指出,在快激波下游流场中β值和Ti/Te都增大,因而在上述区间不论何种流速的太阳风中当有快激波经过后其下游流场内很难形成慢激波。  相似文献   

3.
利用新近获得的子午面磁盔-电流片背景太阳风稳态解,对激波从盔底沿电流片方向往外传播时与磁盔间的相互作用进行了数值模拟研究,重要新结果是:1.磁盔的存在使受扰介质速度跃变中央出现下凹,随着激波传出磁盔区并沿电流片方向传播,速度下凹逐渐减弱以致消失;2.激波将磁盔拉长并把盔顶的环形(垂直赤道面)磁场带到行星际空间,成为行星际磁场南向分量的来源之一;3.5个太阳半径(R⊙)内的磁盔部分将出现精细结构,沿盔外边界形成两条高速带,以及马蹄形密度(亮)环形结构等.这些结果表明,太阳附近高速等离子体与磁盔间存在重要的动力学相互作用过程,对行星际空间的太阳风三维结构有重要影响.  相似文献   

4.
利用新近获得的子午面磁盔-电流片背景太阳风稳态解,对激波从盔底沿电流片方向往外传播时与磁盔间的相互作用进行了数值模拟研究,重要新结果是:1.磁盔的存在使受扰介质速度跃变中央出现下凹,随着激波传出磁盔区并沿电流片方向传播,速度下凹逐渐减弱以致消失;2.激波将磁盔拉长并把盔顶的环形(垂直赤道面)磁场带到行星际空间,成为行星际磁场南向分量的来源之一;3.5个太阳半径(R⊙)内的磁盔部分将出现精细结构,沿盔外边界形成两条高速带,以及马蹄形密度(亮)环形结构等.这些结果表明,太阳附近高速等离子体与磁盔间存在重要的动力学相互作用过程,对行星际空间的太阳风三维结构有重要影响.  相似文献   

5.
地球极区电离层对行星际激波的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
本文就地球电离层对行星际激波的动力学响应进行三维全球数值模拟研究.背景行星际磁场为螺旋场,南北分量为零;初始电离层由Ⅰ区场向电流和相应的晨昏电场所主导;行星际激波沿日地连线方向撞击地球.模拟结果表明,在激波的作用下,电离层Ⅰ区电流系统向子夜方向运动,在向阳侧相继出现与原Ⅰ区电流反向的异常场向电流对和同向的新生Ⅰ区电流对.该异常场向电流对在极盖区形成瞬间昏晨电场,尾随原Ⅰ区电流向夜侧方向漂移直至湮没.与此同时,新生的Ⅰ区电流不断增强并向夜侧和赤道方向延伸,最终取代原Ⅰ区电流,相应极盖区又恢复到原来的晨昏电场状态.这一响应过程和行星际激波强度有关:激波强度越强,新生的Ⅰ区场向电流也越强,它向赤道方向延伸的距离也越大,能到达的纬度也越低.上述结果在趋势上与观测到的输运对流涡旋和亚极光块的运动特征一致.  相似文献   

6.
日心距离0.3AU以内形成的磁流体慢激波在向行星际空间传播过程中,通过向上游发出快压缩波而不断减弱.所发出的快压缩波经非线性变陡转化为快激波,形成由原慢激波和新生快激波构成的激波系统.强度不断减弱的慢激波将逐渐演变为准切向间断.这可能是在1AU附近很少观测到慢激波的重要原因.  相似文献   

7.
本文分析了斜入射波矢与背景磁场和激波法线共面时,一维小幅度Alfvèn波干扰下,慢激波的稳定性问题;论证了Alfvèn波在慢激波上的射线反射和折射规律;并就日冕慢激波情形进行了具体的数值计算。结果表明,除非上游法向流速接近上游法向Alfvèn波波速,在上述斜入射的Alfvèn波干扰下,慢激波总是稳定的。日冕慢激波是这种稳定性的一个例子;日冕慢激波的存在,能使起源于日冕向行星际空间传播(不管它起源于日冕慢激波之内或外)的Alfvèn波的法向能流密度增大。  相似文献   

8.
利用HeliosA,B飞船1974年至1980年的太阳风探测资料,分析了不同速度间隔太阳风质子温度径向变化指数在太阳不同活动期的变化,以及不同太阳活动期间内日球行星际激波强度分布的变化.结果指出,在0.3-1.0AU区间行星际激波可能是太阳风加热的一个重要因素,这一因素在太阳活动高年可能起着主要的作用.激波MHD数值模拟也从量的方面表明激波加热太阳风的有效性.  相似文献   

9.
利用297个耀斑-行星际激波-地磁扰动事件,统计研究了耀斑-行星际激波等离子体结构与相应磁扰结构间的关系,新的发现是:当激波面后的磁场南、北分量不大时,激波等离子体结构决定着相应磁扰的基本结构形态,特别是等离子体热状态与相应磁扰的恢复相关系十分密切.由本文定义的激波能量传输指数--FS指数对相应地磁扰动能给出较好的描述.推论:除磁重联这类能量传输机制外,对于行星际磁场南、北分量较小时,还可能存在以等离子体过程为基础的决定磁扰变化结构的太阳风-磁层能量传输机制,应进一步研究.  相似文献   

10.
行星际高速流的演化   总被引:1,自引:0,他引:1       下载免费PDF全文
本文采用一维时变模型,对高速流在行星际空间的演化进行数值模拟.结果表明:1.高速流前沿演化成为由前向快、慢激波和后向快激波构成的激波系统,高速流固有的低密度特征显著减弱前向慢激波的强度,并阻止后向慢激波的出现.2.高速流尾沿产生以快模为主体的前、后向稀疏波,它们对高速流前沿形成的快激波对的演化具有重要作用.  相似文献   

11.
This paper reviews quantitative analysis results of the energy transfer and dissipation processes in the GUMICS-4 global MHD simulation. Reconnection power dissipating magnetic energy, dynamo power transferring energy from plasma to the field, and energy flux transport across the magnetopause surface are all examined separately and shown to yield consistent results. This is used to argue that magnetic reconnection is the process controlling the energy transfer, even though it is not localized near the reconnection line. The most important factors controlling the reconnection efficiency are the interplanetary magnetic field (IMF) orientation and the solar wind speed, while the IMF magnitude and solar wind density play a lesser role. During northward IMF, the reconnection efficiency is larger for high speed and low IMF than for low speed and high IMF magnitude, even though the solar wind electric field in both cases is the same. Moreover, increasing pressure by increasing density has a different effect from equal increase of pressure by increasing the solar wind speed. Comparison with statistical observational results shows that the simulation results are in qualitative agreement with the observations, which significantly increases our confidence in interpreting the simulation results.  相似文献   

12.
Data from the BMSW spectrometer, which measures the ion flux value and sometimes plasma parameters with a time resolution of 31 ms, allow the study of the parameters of turbulence of the solar wind and magnetosheath plasma on kinetic scales. In this work, the frequency spectra of the ion flux fluctuations before and after recording the interplanetary shock front in the Earth’s magnetosheath are compared based on these data. It is shown that, in contrast to the solar wind, where the exponential decay of the spectrum often occurs after the shock front on the kinetic scales, no such phenomenon is observed in the magnetosheath: the spectrum on these scales can be approximated by a power function in all the cases considered. In half of these cases, the spectrum slope on the kinetic scales does not change during the interplanetary shock propagation. The results indicate a weak impact of interplanetary shock waves on the parameters of the plasma turbulence. In addition, it is shown that an interplanetary shock does not change the level of intermittency of the ion flux in the magnetosheath at both low and high level before the front.  相似文献   

13.
时变行星际太阳风模拟及其结果评估   总被引:1,自引:0,他引:1       下载免费PDF全文
背景太阳风对于地球附近的空间环境有着重要的影响,三维磁流体力学太阳风模型是背景太阳风研究和预报的重要工具.通过太阳光球磁场数据驱动的边界条件,我们发展了一个时变的行星际三维磁流体力学太阳风模型.使用这个模型,我们模拟了2008年全年的行星际背景太阳风,分析了该年太阳风结构全球特征的演化和行星际局地观测与日冕结构间的联系.实现了一套太阳风连续参数和特征结构模拟质量的定量评估方法.对2008年模拟结果的评估表明,模型较好地重现了背景太阳风的大尺度特征.模拟与观测速度间的相关性系数达到了0.6以上,行星际磁场强度与观测吻合得较好,捕获了全部的行星际磁场极性反转和82.76%的流相互作用区,行星际磁场极性反转的误报率仅为6.67%,流相互作用区的误报率仅为11.11%,两种结构的到达时间误差在1天左右.同时,通过综合分析评估结果,我们明确了高速流结构、内边界磁场分布等模型在进一步改进中需要重点注意的问题.  相似文献   

14.
The dominant interplanetary phenomena that are frequently associated with intense magnetic storms are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two such interplanetary structures, involving an intense and long duration Bs component of the IMF are: the sheath region behind a fast forward interplanetary shock, and the CME ejecta itself. Frequently, these structures lead to the development of intense storms with two-step growth in their main phases.These structures, when combined, lead sometimes to the development of very intense storms, especially when an additional interplanetary shock is found in the sheath plasma of the primary structure accompanying another stream. The second stream can also compress the primary cloud, intensifying the Bs field, and bringing with it an additional Bs structure. Thus, at times very intense storms are associated with three or more Bs structures.Another aspect that can contribute to the development of very intense storms refers to the recent finding that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense magnetospheric energization.  相似文献   

15.
Volume currents in the magnetosheath region are calculated within the framework of a new analytical model. Magnetic field structure in the region is found, satisfying boundary conditions on the bow shock and the magnetopause, and then volume currents are calculated using the Maxwell equation. Surface bow shock and magnetopause currents are calculated, too. Free parameters of the model are interplanetary magnetic field, Mach number of the solar wind flow, distances to the bow shock and to the magnetopause, and field compression at the magnetopause.  相似文献   

16.
The general features of the region of interaction of the solar wind with the ionosphere of Venus and Mars are compared using data obtained with the Mariner 5 and the Pioneer Venus Orbiter (PVO) spacecraft for Venus and with the Phobos II, the Mars Global Surveyor (MGS) and the Mars Express spacecraft for Mars. Despite the overall weak intrinsic global magnetic field that is present in both planets there are significant differences in the manner in which the interplanetary magnetic field accumulates and is organized around and within their ionosphere. Such differences are unrelated to the crustal magnetic field remnants inferred from the MGS measurements around Mars. In fact, while in Venus and Mars there is a region in which the magnetic field becomes enhanced as it piles up in their plasma environment it is shown that such a region exhibits different regimes with respect to changes in the ion composition measured outside and within the ionosphere. At Venus the region of enhanced magnetic field intensity occurs in general above the ionopause which represents the boundary across which there is a change in the ion composition with dominant solar wind protons above and planetary O+ ions below. At Mars the region of enhanced magnetic field is located below a magnetic pileup boundary across which there is also a comparable change in the ion composition (solar wind protons above and planetary O+ ions below). It is argued that this difference in the relative position of the region of enhanced magnetic field with respect to that of a plasma boundary that separates different ion populations results from the peculiar response of the ionosphere of each planet to the oncoming solar wind dynamic pressure. While at Venus the peak ionospheric thermal pressure is in general sufficient to withhold the incident solar wind kinetic pressure there is a different response in Mars where the peak ionospheric thermal pressure is in general not large enough to deviate the solar wind. In this latter case the ionosphere is unable to force the solar wind to move around the ionosphere and as a result the oncoming electron population can reach low altitudes where it is influenced by neutral atmospheric particles (the solar wind proton population is replaced at the magnetic pileup boundary which marks the upper extent of the region where the interplanetary magnetic field becomes enhanced). Peculiar conditions are expected near the magnetic polar regions and over the terminator plane where the solar wind is directed along the sides of the planet.  相似文献   

17.
On May 4, 1998, at 0227 UT an interplanetary shock crossed the WIND spacecraft, and half an hour later a Sudden Commencement occurred. Coinciding with the Sudden Commencement a rapid intensification of the flux of particle precipitation into the ionosphere was observed. Evidence is presented that the ionospheric electric fields were influenced by the associated dynamic variations of the ionospheric conductivities. Following the initial phase the ionospheric flow speeds increased rapidly over the next 20 min to more than 2000 m/s, in agreement with an increased effective coupling of the solar wind energy to the magnetosphere following the interplanetary shock that caused the Sudden Commencement. These strong flows were meandering in latitude, a type of plasma flow modulation that has been reported before to occur during Omega band events: a string of alternating field-aligned currents propagating eastward. The riometer absorption was found to be at a minimum in regions associated with outward directed field aligned currents. The riometer absorption regions (the regions of particle precipitation) were drifting with E × B drift speed of the ionospheric electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号