首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cluster lens Cl 0024+1654 is undoubtedly one of the most beautiful examples of strong gravitational lensing, providing five large images of a single source with well-resolved substructure. Using the information contained in the positions and the shapes of the images, combined with the null space information, a non-parametric technique is used to infer the strong lensing mass map of the central region of this cluster. This yields a strong lensing mass of  1.60 × 1014 M  within a 0.5  arcmin radius around the cluster centre. This mass distribution is then used as a case study of the monopole degeneracy, which may be one of the most important degeneracies in gravitational lensing studies and which is extremely hard to break. We illustrate the monopole degeneracy by adding circularly symmetric density distributions with zero total mass to the original mass map of Cl 0024+1654. These redistribute mass in certain areas of the mass map without affecting the observed images in any way. We show that the monopole degeneracy and the mass-sheet degeneracy together lie at the heart of the discrepancies between different gravitational lens reconstructions that can be found in the literature for a given object, and that many images/sources, with an overall high image density in the lens plane, are required to construct an accurate, high-resolution mass map based on strong lensing data.  相似文献   

2.
Galaxies acting as gravitational lenses are surrounded by, at most, a handful of images. This apparent paucity of information forces one to make the best possible use of what information is available to invert the lens system. In this paper, we explore the use of a genetic algorithm to invert in a non-parametric way strong lensing systems containing only a small number of images. Perhaps the most important conclusion of this paper is that it is possible to infer the mass distribution of such gravitational lens systems using a non-parametric technique. We show that including information about the null space (i.e. the region where no images are found) is prerequisite to avoid the prediction of a large number of spurious images, and to reliably reconstruct the lens mass density. While the total mass of the lens is usually constrained within a few per cent, the fidelity of the reconstruction of the lens mass distribution depends on the number and position of the images. The technique employed to include null space information can be extended in a straightforward way to add additional constraints, such as weak-lensing data or time-delay information.  相似文献   

3.
The availability of a robust and efficient routine for calculating light curves of a finite source magnified due to bending of its light by the gravitational field of an intervening binary lens is essential for determining the characteristics of planets in such microlensing events, as well as for modelling stellar lens binaries and resolving the brightness profile of the source star. However, the presence of extended caustics, and the fact that the images of the source star cannot be determined analytically while their number depends on the source position (relative to the lens system), makes such a task difficult in general. Combining the advantages of several earlier approaches, an adaptive contouring algorithm is presented, which only relies on a small number of simple rules and operations on the adaptive search grid. By using the parametric representation of critical curves and caustics found by Erdl & Schneider, seed solutions to the adaptive grid are found, which ensures that no images or holes are missed.  相似文献   

4.
引力透镜效应是探测星系团物质分布的有效方法之一.目前,利用引力透镜数据重构星系团质量分布的主流方法可以分为两大类,即参数法和非参数法.在实际研究工作中,受限于质量模型假设和计算分辨率等方面的影响,现有的重构算法仍有诸多亟需解决的问题.基于Shapelets基函数的引力透镜质量重构方法通过基函数来实现引力透镜质量重构,使用Shapelets基函数分解引力透镜势,以引力透镜中多重像的位置和背景星系椭率畸变为限制条件来迭代求解基函数系数从而得到透镜体的质量分布.通过拟合一个模拟的NFW (Navarro,Frenk and White)透镜系统测试了新方法的可行性,结果表明新方法可以在整体上重构出透镜体的质量分布,并拟合出接近真实的源位置,能够为星系团质量测量提供一套灵活且高效的重构算法.  相似文献   

5.
Images are considered which are produced by a spherically symmetric gravitational lens from a source of small angular size. Simple analytic expressions are derived to describe the position, amplification, shape distortion and time delay for these images provided the mass distribution of the lens corresponds to the King model. Possible types of images are analysed (single and triple images, as well as degenerate double ones at caustics) which may be formed at different positions of the observer relative to the light source and lens. The focal length of galaxies of different types is evaluated on the basis of the obtained results and the conditions are determined at which these galaxies may considerably affect the images of distant sources.  相似文献   

6.
Radio monitoring of the gravitational lens system B0218+357 reveals it to be a highly variable source with variations on time-scales of a few days correlated in both images. This shows that the variability is intrinsic to the background lensed source and suggests that similar variations in other intraday variable sources can also be intrinsic in origin.  相似文献   

7.
This paper makes the first systematic attempt to determine using perturbation theory the positions of images by gravitational lensing due to arbitrary number of coplanar masses without any symmetry on a plane, as a function of lens and source parameters. We present a method of Taylor-series expansion to solve the lens equation under a small mass-ratio approximation. First, we investigate perturbative structures of a single-complex-variable polynomial, which has been commonly used. Perturbative roots are found. Some roots represent positions of lensed images, while the others are unphysical because they do not satisfy the lens equation. This is consistent with a fact that the degree of the polynomial, namely the number of zeros, exceeds the maximum number of lensed images if   N = 3  (or more). The theorem never tells which roots are physical (or unphysical). In this paper, unphysical ones are identified. Secondly, to avoid unphysical roots, we re-examine the lens equation. The advantage of our method is that it allows a systematic iterative analysis. We determine image positions for binary lens systems up to the third order in mass ratios and for arbitrary N point masses up to the second order. This clarifies the dependence on parameters. Thirdly, the number of the images that admit a small mass-ratio limit is less than the maximum number. It is suggested that positions of extra images could not be expressed as Maclaurin series in mass ratios. Magnifications are finally discussed.  相似文献   

8.
We propose a novel technique to refine the modelling of galaxy cluster mass distribution using gravitational lensing. The idea is to combine the strengths of both 'parametric' and 'non-parametric' methods to improve the quality of the fit. We develop a multiscale model that allows sharper contrast in regions of higher density where the number of constraints is generally higher. Our model consists of (i) a multiscale grid of radial basis functions with physically motivated profiles and (ii) a list of galaxy-scale potentials at the location of the cluster member galaxies. This arrangement of potentials of different sizes allows us to reach a high resolution for the model with a minimum number of parameters. We apply our model to the well-studied cluster Abell 1689. We estimate the quality of our mass reconstruction with a Bayesian Monte Carlo Markov Chain sampler. For a selected subset of multiple images, we manage to halve the errors between the positions of predicted and observed images compared to previous studies. This is due to the flexibility of multiscale models at intermediate scale between cluster and galaxy scale. The software developed for this paper is part of the public lenstool package which can be found at http://www.oamp.fr/cosmology/lenstool .  相似文献   

9.
We perform a detailed analysis of the optical gravitational lens ER 0047–2808 imaged with the Wide Field Planetary Camera 2 on the Hubble Space Telescope . Using software specifically designed for the analysis of resolved gravitational lens systems, we focus on how the image alone can constrain the mass distribution in the lens galaxy. We find that the data are of sufficient quality to strongly constrain the lens model with no a priori assumptions about the source. Using a variety of mass models, we find statistically acceptable results for elliptical isothermal-like models with an Einstein radius of 1.17 arcsec. An elliptical power-law model  (Σ∝ R −β)  for the surface mass density favours a slope slightly steeper than isothermal with  β= 1.08 ± 0.03  . Other models including a constant mass-to-light ratio (M/L), pure Navarro, Frenk & White halo and (surprisingly) an isothermal sphere with external shear are ruled out by the data. We find the galaxy light profile can only be fit with a Sérsic plus point-source model. The resulting total  M/L B   contained within the images is  4.7  h 65± 0.3  . In addition, we find the luminous matter is aligned with the total mass distribution within a few degrees. This is the first time a resolved optical gravitational lens image has been quantitatively reproduced using a non-parametric source.
The source, reconstructed by the software, is revealed to have two bright regions, with an unresolved component inside the caustic and a resolved component straddling a fold caustic. The angular size of the entire source is ∼0.1 arcsec and its (unlensed) Lyα flux is  3 × 10−17 erg s−1 cm−2  .  相似文献   

10.
在光滑物质分布模型下,临界曲线是强引力透镜系统中像平面上一条放大率为无穷的线,而考虑少量离散质量的微透镜效应后,源平面上的放大率分布会出现复杂的结构,为暗物质成分的探测提供了一种有效途径.模拟临界曲线附近微透镜效应存在临界曲线上放大率无穷大和计算量巨大的困难.要达到所需的模拟精度,直接使用传统的光线追踪算法需要巨大的计算资源.为此发展了一个能实现海量计算的Graphics Processing Unit (GPU)并行方法来模拟临界曲线附近的微引力透镜效应.在型号为NVIDIA Tesla V100S PCIe 32 GB的GPU上,对于需要处理13000多个微透镜天体、发射1013量级光线的模拟,耗时在7000 s左右.在GPU并行的基础上,与直接的光线追踪算法相比,插值近似的引入使计算速度提升约两个数量级.利用该方法生成80个放大率分布图,并从中抽取800条光变曲线,进行了微焦散线数密度和峰值放大率的统计.  相似文献   

11.
We present the first detection of a gravitational depletion signal at near-infrared wavelengths, based on deep panoramic images of the cluster Abell 2219 ( z =0.22) taken with the Cambridge Infrared Survey Instrument (CIRSI) at the prime focus of the 4.2-m William Herschel Telescope. Infrared studies of gravitational depletion offer a number of advantages over similar techniques applied at optical wavelengths, and can provide reliable total masses for intermediate-redshift clusters. Using the maximum-likelihood technique developed by Schneider, King & Erben, we detect the gravitational depletion at the 3 confidence level. By modelling the mass distribution as a singular isothermal sphere and ignoring the uncertainty in the unlensed number counts, we find an Einstein radius of (66 per cent confidence limit). This corresponds to a projected velocity dispersion of v 800 km s1, in agreement with constraints from strongly lensed features. For a Navarro, Frenk & White mass model, the radial dependence observed indicates a best-fitting halo scalelength of 125 h 1 kpc. We investigate the uncertainties arising from the observed fluctuations in the unlensed number counts, and show that clustering is the dominant source of error. We extend the maximum-likelihood method to include the effect of incompleteness, and discuss the prospects of further systematic studies of lensing in the near-infrared band.  相似文献   

12.
To date, the study of high-magnification gravitational lensing effects of galaxy clusters has focused upon the grossly distorted, luminous arc-like features formed in massive, centrally condensed clusters. We investigate the formation of a different type of image, highly magnified yet undistorted, in two widely employed cluster mass density profiles, namely an isothermal sphere with a core, and a universal dark matter halo profile derived from the numerical simulations of Navarro et al. We examine the properties of images of extended sources produced by these two cluster profiles, paying particular attention to the undistorted images. Using simple assumptions about the source and lens population, we estimate the relative frequency of the occurrence of highly magnified, undistorted images and the more commonly known giant arcs.  相似文献   

13.
The ultraluminous broad absorption line quasar APM 08279+5255 is one of the most luminous systems known. Here, we present an analysis of its nuclear  CO(1–0)  emission. Its extended distribution suggests that the gravitational lens in this system is highly elliptical, probably a highly inclined disc. The quasar core, however, lies in the vicinity of a naked cusp, indicating that APM 08279+5255 is truly the only odd-image gravitational lens. This source is the second system for which the gravitational lens can be used to study structure on sub-kiloparsec scales in the molecular gas associated with the AGN host galaxy. The observations and lens model require CO distributed on a scale of ∼400 pc. Using this scale, we find that the molecular gas mass makes a significant, and perhaps dominant, contribution to the total mass within a couple of hundred parsecs of the nucleus of APM 08279+5255.  相似文献   

14.
High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration; the maximum image separation is 542 mas and the total flux density is 48 mJy at 5 GHz. A best-fitting lens model with a singular isothermal ellipsoid results in large errors in the image positions. A significantly improved fit is obtained after the addition of a shear component, suggesting that the lensing system is more complex and may consist of multiple deflectors. The integrated radio spectrum of the background source indicates that it is a gigahertz peaked spectrum source. It may therefore be possible to resolve structure within the radio images with deep VLBI observations and thus to constrain the lensing mass distribution better.  相似文献   

15.
We model the mass distribution in the recently discovered Einstein ring LBG J213512.73−010143 (the 'Cosmic Eye') using archival Hubble Space Telescope imaging. We reconstruct the mass density profile of the z = 0.73 lens and the surface brightness distribution of the z = 3.07 source and find that the observed ring is best fitted with a dual-component lens model consisting of a baryonic Sersic component nested within a dark matter halo. The dark matter halo has an inner slope of 1.42+0.24−0.22, consistent with cold dark matter simulations after allowing for baryon contraction. The baryonic component has a mass-to-light ratio of  1.71+0.28−0.38 M/L B   which when evolved to the present day is in agreement with local ellipticals. Within the Einstein radius of 0.77 arcsec (5.6 kpc), the baryons account for 46 ± 11 per cent of the projected lens mass. External shear from a nearby foreground cluster is accurately predicted by the model. The reconstructed surface brightness distribution in the source plane clearly shows two peaks. Through a generalization of our lens inversion method, we conclude that the redshifts of both peaks are consistent with each other, suggesting that we are seeing structure within a single galaxy.  相似文献   

16.
We present observations of CLASS B2108+213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which we believe is emission from a lensing galaxy. 5-GHz VLBA observations reveal milliarcsecond-scale structure in the two lensed images that is consistent with gravitational lensing. Optical emission from the two lensed images and two lensing galaxies within the Einstein radius is detected in Hubble Space Telescope imaging. Furthermore, an optical gravitational arc, associated with the strongest lensed component, has been detected. Surrounding the system is a number of faint galaxies which may help explain the wide image separation. A plausible mass distribution model for CLASS B2108+213 is also presented.  相似文献   

17.
A comprehensive new approach is presented for deriving probability densities of physical properties characterizing the lens and source that constitute an observed galactic microlensing event. While previously encountered problems are overcome, constraints from event anomalies and model parameter uncertainties can be incorporated into the estimates. Probability densities for given events need to be carefully distinguished from the statistical distribution of the same parameters among the underlying population from which the actual lenses and sources are drawn. Using given model distributions of the mass spectrum, the mass density, and the velocity distribution of Galactic disc and bulge constituents, probability densities of lens mass, distance, and the effective lens–source velocities are derived, where the effect on the distribution that arises from additional observations of annual parallax or finite-source effects, or the absence of significant effects, is shown. The presented formalism can also be used to calculate probabilities for the lens to belong to one or another population and to estimate parameters that characterize anomalies. Finally, it is shown how detection efficiency maps for binary-lens companions in the physical parameters, such as companion mass and orbital semimajor axis, arise from values determined for the mass ratio and dimensionless projected separation parameter, including the deprojection of the orbital motion for elliptical orbits. Compared to the naive estimate based on 'typical values', the detection efficiency for low-mass companions is increased by mixing in higher detection efficiencies for smaller mass ratios (i.e. smaller masses of the primary).  相似文献   

18.
A new four-image gravitational lens system, B0712+472, has been discovered during the Cosmic Lens All-Sky Survey. This system consists of four flat-spectrum radio images that are also seen on a Hubble Space Telescope ( HST ) image, together with the lensing galaxy. We present MERLIN, VLA and VLBA maps and WHT spectra of the system as well as the HST images. The light distribution of the lensing galaxy is highly elongated and so too is the mass distribution deduced from modelling. We suggest a redshift of ∼1.33 for the lensed object; the lens redshift will require further investigation. The discovery of this new system further increases the ratio of four-image to two-image lens systems currently known, exacerbating problems of required ellipticity of matter distributions in lensing galaxies.  相似文献   

19.
We propose hydrostatic polytropic spheres governed by the Lane-Emden equation (LEE) of index n as a novel set of physical models for axially averaged gravitational lenses anywhere in the Universe, alternative to the familiar singular isothermal sphere (SIS) and the Navarro–Frenk–White (NFW) profile, as such general polytropic spheres are conceptually simple, versatile in representing a series of equations of state, and able to address both the inner core and cusp features. As LEE is nonlinear, there exist several distinct classes of LEE solutions to serve as physical lens models. With a few scaling parameters, the complete problem can be readily reconstructed with full physical dimensions. A given mass density profile satisfying LEE produces lensing effects that are solely determined by a dimensionless parameter q which contains geometric and kinematic information about the source-lens-observer system. The lens mapping and tangential shear or distortion profile are derived, first analytically for special cases and then asymptotically at the outskirts or near the edge of the lens. Numerical procedures for calculating full lensing profiles of a general lens are developed. Our results include the analytical “singular polytropic sphere” (SPS) profile which generalizes the SIS model and may outperform the latter in modeling dark matter halos among others. We further point out that dynamic models of general polytropic spheres in self-similar evolution can serve as several broad classes of gravitational lenses and produce time-dependent lensing effects slow or fast depending on the pertinent time scales. Astrophysical sources that can be lensed include electromagnetic wave sources in the entire frequency band, gravitational wave sources in the entire frequency band, gravitons even possibly with finite masses, neutrino sources of three different types, neutron sources, and ultra high energy cosmic rays (UHECRs) of electrically charged particles which can also interact with magnetic fields. We discuss and elabrate applications to dark matter halos, hypermassive black holes and supermassive black holes in the entire Universe including the early Universe, magnetized supermassive stars, static and dynamically evolving spherical and cylindrical lenses in contexts of astrophysics and cosmology.  相似文献   

20.
We present a method for recovering the distribution functions of edge-on thin axisymmetric discs directly from their observable kinematic properties. The most generally observable properties of such a stellar system are the line-of-sight velocity distributions of the stars at different projected radii along the galaxy. If the gravitational potential is known, then the general two-integral distribution function can be reconstructed using the shapes of the high-velocity tails of these line-of-sight distributions. If the wrong gravitational potential is adopted, then a distribution function can still be constructed using this technique, but the low-velocity parts of the observed velocity distributions will not be reproduced by the derived dynamical model. Thus, the gravitational potential is also tightly constrained by the observed kinematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号