首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aragonite compensation depth (ACD) fluctuated considerably during the last glacial until the Holocene with a dominant pteropod preservation spike during the deglacial period, which is prominently seen in three well‐dated cores covering the Andaman Sea, northeastern Indian Ocean. The precise time period of the preservation spike of pteropods is not known but this knowledge is crucial for stratigraphical correlation and also for understanding the driving mechanism. Isotopic and foraminiferal proxies were used to decipher the possible mechanism for pteropods preservation in the Andaman Sea. The poor preservation/absence of pteropods during the Holocene in the Andaman Sea may have implications for ocean acidification, driven by enhanced atmospheric CO2 concentration. Strengthening of the summer monsoon and the resultant high biological productivity may also have played a role in the poor preservation of pteropods. The deglacial pteropod spike is characterized by high abundance/preservation of the pteropods between ~19 and 15 cal. ka BP, associated with very low atmospheric CO2 concentration. Isotope data suggest the prevalence of a glacial environment with reduced sea surface temperature, upwelling and enhanced salinity during the pteropod preservation spike. Total planktic foraminifera and Globigerina bulloides abundances are low during this period, implying a weakened summer monsoon and reduced foraminiferal productivity. Based on the preservation record of pteropods, it is inferred that the ACD was probably deepest (>2900 m) at 16.5 cal. ka BP. The synchronous regional occurrence of the pteropod preservation spike in the Andaman Sea and in the northwestern Indian Ocean could potentially be employed as a stratigraphic marker.  相似文献   

2.
We present an unprecedented multicentennial sediment record from the foot of Vesterisbanken Seamount, central Greenland Sea, covering the past 22.3 thousand years (ka). Based on planktic foraminiferal total abundances, species assemblages, and stable oxygen and carbon isotopes, the palaeoenvironments in this region of modern deepwater renewal were reconstructed. Results show that during the Last Glacial Maximum the area was affected by harsh polar conditions with only episodic improvements during warm summer seasons. Since 18 ka extreme freshwater discharges from nearby sources occurred, influencing the surface water environment. The last major freshwater event took place during the Younger Dryas. The onset of the Holocene was characterized by an improvement of environmental conditions suggesting warming and increasing ventilation of the upper water layers. The early Holocene saw a stronger Atlantic waters advection to the area, which began around 10.5 and ended quite rapidly at 5.5 ka, followed by the onset of Neoglacial cooling. Surface water ventilation reached a maximum in the middle Holocene. Around 3 ka the surface water stratification increased leading to subsequent amplification of the warming induced the North Atlantic Oscillation at 2 ka.  相似文献   

3.
Stable isotopes, geochemical, lithological, and micropaleontological results from cores from the far northwest (FNW) Pacific and the Okhotsk and Bering seas are used to reconstruct the regional environment for the last glaciation, the deglacial transition, and the Holocene. δ18O records of planktonic foraminifera of the region show two “light” shifts during deglacial time, provoked by the freshening of the surface water and climate warming. These north Pacific terminal events (T1ANP and T1BNP) with ages of 12,500 and 9300 yr B.P., respectively, occur almost simultaneously with two episodes of accelerated glacier melting around the North Atlantic. Along with the isotopic shifts, the CaCO3content in regional sediments increased abruptly (1A and 1B carbonate peaks), probably due to changes of productivity and pore water chemistry of surface sediments. Organic matter and opal concentration increased during the transition (between T1ANP and T1BNP events) in the sediments of the FNW Pacific and the southern part of the Bering Sea and opal content increased in the Holocene in the Bering and Okhotsk Seas. δ13C records of cores from the Okhotsk and Bering seas and the FNW Pacific do not contradict the hypothesis of increased intermediate water formation in the region during glaciation. During deglaciation, accumulation of the coarse terrigenous component decreased in sediments of the Bering Sea and the FNW Pacific before the T1ANP event, probably as a result of rising sea level and opening of the Bering Strait.  相似文献   

4.
The uppermost Quaternary sediments in Cartwright Saddle, Labrador Shelf, are acoustically laminated, with reflectors that can be traced over long distances. Two piston cores from the saddle record changes in sediment and meltwater delivery from the northeast margin of the Laurentide Ice Sheet (LIS) during deglaciation. Variations in sediment properties indicate a similar history of sediment accumulation over the last 12 kyr. The temporal sampling interval reaches decadal resolution in the last deglacial period 7–9 ka. Analyses of total carbonate content, sediment magnetic variables, foraminiferal species and stable isotope measurements on planktic foraminifers show that abrupt changes occurred ca. 10.9, 9.2, 8.8, 7.9 and 7 ka (with 450 yr correction). There was no distinct change in sediment character during much of the Younger Dryas chronozone. In the δ18O record, the 8.8 ka event is a dramatic 1‰ shift toward lower values, which we associate with the Noble Inlet glacial event within Hudson Strait. We do not see the pronounced low δ18O event at 7.1 ka reported off Nova Scotia, but surprisingly, neither the Nova Scotia records nor other records in the Labrador Sea capture the impressive 8.8 ka change. Serious consideration must be given to the final collapse of the LIS as the cause of the 8.2 cal. ka cold event recorded in Greenland and northwest Europe. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Expansion of fresh and sea‐ice loaded surface waters from the Arctic Ocean into the sub‐polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid‐ to late Holocene fresh and sea‐ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water‐mass composition (upper ˜200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water‐mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid‐Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub‐polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and a warming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea‐ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.  相似文献   

6.
The Holocene paleoclimate of the Caucasus region is rather complex and not yet well understood: while existing studies are mainly based on pollen records from high-altitude and humid lowland regions, no records are available from the semi-humid to semi-arid south-eastern Caucasian lowlands. Therefore, this study investigated compound-specific δ2H and δ13C isotopes of leaf wax biomarkers from Holocene floodplain soils in eastern Georgia. Our results show that the leaf wax δ2H signal from the paleosols mostly reflects changes in the moisture source and its isotopic composition. Depleted δ2H values before ~8 cal ka bp change towards enriched values after ~5 cal ka bp and become again depleted after ~1.6 cal ka bp. This trend could be caused by Holocene changes of the isotopic compositions of the Black and eastern Mediterranean Sea, and/or by varying contribution of both moisture sources linked with the North Atlantic Oscillation. The leaf wax δ13C signal from the paleosols directly indicates varying local water availability and drought stress. Depleted δ13C values before ~8 and after ~5 cal ka bp indicate wetter local conditions with higher water availability, whereas more enriched values during the middle Holocene (~8 until at least 5 cal ka bp ) indicate drier conditions with increased drought stress.  相似文献   

7.
Seasonality of precipitation is an important yet elusive climate parameter in paleoclimatological reconstructions. This parameter can be inferred qualitatively from pollen and other paleoecological methods, but is difficult to assess quantitatively. Here, we have assessed seasonality of precipitation and summer surface wetness using compound specific hydrogen and carbon isotope ratios of vascular plant leaf waxes and Sphagnum biomarkers extracted from the sediments of an ombrotrophic peatland, Bøstad Bog, Nordland, Norway. Our reconstructed precipitation seasonality and surface wetness are consistent with regional vegetation reconstructions. During the early Holocene, 11.5–7.5 ka, Fennoscandia experienced a cool, moist climate. The middle Holocene, 7.5–5.5 ka, was warm and dry, transitioning towards cooler and wetter conditions from the mid-Holocene to the present. Changes in seasonality of precipitation during the Holocene show significant coherence with changes in sea surface temperature in the Norwegian Sea, with higher SST corresponding to greater percentage of winter precipitation. Both high SST in the Norwegian Sea and increased moisture delivery to northern Europe during winter are correlated with a strong gradient between the subpolar low and subtropical high over the North Atlantic (positive North Atlantic Oscillation).  相似文献   

8.
The effect of seasonally reversing monsoons in the northern Indian Ocean is to impart significant changes in surface salinity (SS). Here, we report SS changes during the last 32 kyr in the Lakshadweep Sea (southeastern Arabian Sea) estimated from paired measurements of d18O and sea surface temperature (SST) using Globigerinoides sacculifer, an upper mixed layer dwelling foraminifera. The heaviest d18OG.sacculifer (–0.07±0.08‰) is recorded between 23 and 15 ka, which could be defined as the last glacial maximum (LGM). The d18OG.sacculifer shift between the LGM and Holocene is 2.07‰. The SST shows an overall warming of 2°C from the LGM to Holocene (28°C to 30°C). However, coldest SSTs are observed prior to LGM, i.e., ~27 ka. The SS was higher (~38 psu) throughout most of the recorded last glacial period (32.5–15 ka). This high salinity together with generally lower SSTs suggests a period of sustained weaker summer or stronger winter monsoons. The deglacial warming is associated with rapid reorganization of monsoons and is reflected in decreased salinity to a modern level of ~ 36.5 psu, within a period of ~5 kyr. This indicates intensification of summer monsoons during cold to warm climate transition.  相似文献   

9.
全新世时期的环境和气候变化是全球气候模拟、预测中不可或缺的资料.对苏拉威西海西北部MD98-2178孔(3.6200°N,118.7000°E,水深1 984 m)全新世的样品进行孢粉分析和浮游有孔虫氧稳定同位素测试,重建全新世苏拉威西海周边地区植被演化和气候变化图景.根据孢粉记录得到:在全新世早期至7 ka BP时,各孢粉组合浓度剧烈下降,指示海平面处于上升阶段;在7~4 ka BP时,各孢粉组合浓度都处于低谷,体现为高海平面期;在4 ka BP之后,孢粉记录则显示海平面有小幅的下降.在全新世中期,即5~4 ka BP,热带高山雨林花粉含量明显上升,表明是温度低值期.蕨类孢子记录显示降雨量在全新世早期是持续增加的,但在全新世中期之后,降雨量有所减少,这与陆地孢粉记录和印尼石笋记录的结果相似,体现全新世该地区降雨量受海陆格局和太阳活动共同影响.   相似文献   

10.
The sedimentary succession of piston core RC26-16, dated by 14C accelerator mass spectrometry, provides a nearly continuous palaeoceanographic record of the northeastern South China Sea for the last 15000 yr. Planktic foraminiferal assemblages indicate that winter sea-surface temperatures (SSTs) rose from 18°C to about 24°C from the last glacial to the Holocene. A short-lived cooling of 1°C in winter temperature centred at about 11000 14C yr ago may reflect the Younger Dryas cooling event in this area. Summer SSTs have remained between 27°C and 29°C throughout the record. The temperature difference between summer and winter was about ca. 9°C during the last glacial, much higher than the Holocene value of ca. 5°C. During the late Holocene a short-lived cooling event occurred at about 4000 14C yr ago. Oxygen and carbon isotopic gradients between surface (0–50 m) and subsurface (50–100 m) waters were smaller during the last glacial than those in the Holocene. The fluctuation in the isotopic gradients are caused most likely by changes in upwelling intensity. Smaller gradients indicate stronger upwelling during the glacial winter monsoon. The fauna-derived estimates of nutrient content of the surface waters indicate that the upwelling induced higher fertility and biological productivity during the glacial. The winter monsoon became weaker during the Holocene. The carbonate compensation depth and foraminiferal lysocline were shallower during the Holocene, except for a short-lived deepening at about 5000 14C yr ago. A preservation peak of planktic foraminifera and calcium carbonate occurred between 13400 and 12000 14C yr ago, synchronous to the global preservation event of Termination I.  相似文献   

11.
Isoleucine epimerization (alle/Ue) ratios in the pelecypod Mya truncata and benthic foraminifer Cibicides lobalulus from emerged marine units in western Norway allow construction of a regional relative chronostratigraphy for the Ecmian and Weichselian. Two in situ interglacial sections are considered correlative by the similar biostratigraphy and alle/Ile ratios in C. lobalulus. Overlying sediments at the two sites are of both marine and glacial origin. Neither site contains a complete Weichselian record, but allelic ratios, lithostratigraphy and fauna! changes suggest at least four stadial and three interstadial events occurred along the western Norwegian coast during Early and Middle Weichselian time. Kinetic data defining the relationship between the isoleucine epimerization rate constant and temperature for the species studied allow the estimation of paleotemperatures for samples of known age. Accepting published age estimates for the Eemian interglacial beds, the average Weichselian temperature in western Norway is calculated to have been ca. 4°C below the average Holocene temperature, whereas the last interglacial was 1 to 2°C warmer that the Holocene. The limited temperature depression over this region during the Weichselian implies that coastal western Norway was ice-covered only about 30% of this period, and that Atlantic water, although not necessarily in a warm surface current as today, entered the Norwegian Sea during much of marine isotope stage 5 and intermittently during stage 3. Interpolated amino acid ages date interstadial events at ca. 94 ka, 78 ka and 52 ka, B.P., whereas glacial events are dated ca. 103 ka and bracketed by limiting dates between 78 and 89 ka, between 52 and 63 ka and less than 36 ka B.P.  相似文献   

12.
We present a new U-series dated speleothem record (PC-1) from the Great Basin that documents deglacial climate variability between ca 20.1 and 15.6 ka. Our data show an abrupt 18.6 ka cold event preceding Heinrich event 1 that is consistent with expansion of the Laurentide Ice sheet during the ‘binge’ phase of ice growth. This event coincided with dessication of pluvial Lake Mojave suggesting cold and dry conditions in the southern Great Basin at this time. PC-1 δ18O values before and during Heinrich event 1 are similar, but an increase in stalagmite growth rates suggests wetter conditions that coincided with deposition of spring deposits in southern Nevada. The time interval of our record is consistent with the timing of pluvial conditions in the Great Basin as evident from a comparison to regional wetness proxies. Our new speleothem record, recovered from the recharge area for Devils Hole, does not show a δ18O increase coincident with the abrupt increase in Devils Hole δ18O at c. 18 ka, challenging the view that the Great Basin experienced an early Termination I. This hypothesis is supported by two other southwest speleothem records that demonstrate deglaciation was synchronous with forcing from the North Atlantic Ocean. We suggest that Devils Hole speleothem δ18O values may partly reflect source water changes in the regional aquifer. Further, Devils Hole δ13C minima coincide with peak global glacial conditions and weak Asian monsoon periods, suggesting that they constrain better the timing of pluvial conditions in the Great Basin.  相似文献   

13.
New multiproxy marine data of the Eemian interglacial (MIS5e) from the Norwegian Sea manifest a cold event with near-glacial surface ocean summer temperatures (3–4 °C). This mid-Eemian cooling divided the otherwise relatively warm interglacial climate and was associated with widespread expansions of winter sea-ice and polar water masses due to changes in atmospheric circulation and ocean stability. While the data also verify a late rather than early last interglacial warm peak, which is in general disharmony with northern hemisphere insolation maximum and the regional climatic progression of the early Holocene, the cold event itself was likely instrumental for delaying the last interglacial climate development in the Polar North when compared with regions farther south. Such a ‘climatic decoupling’ of the Polar region may bear profound implications for the employment of Eemian conditions to help evaluate the present and future state of the Arctic cryosphere during a warming interglacial.  相似文献   

14.
Planktic foraminiferal census data, faunal sea surface temperatures (SSTs) and oxygen isotopic and lithic records from a site in the northeast Atlantic were analyzed to study the interglacial dynamics of Marine Isotope Stage (MIS) 11, a period thought to closely resemble the Holocene on the basis of orbital forcing. Interglacial conditions during MIS 11 persisted for approximately 26 ka. After the main deglacial meltwater processes ceased, a 10- to 12-ka-long transitional period marked by significant water mass circulation changes occurred before surface waters finally reached their thermal maximum. This SST peak occurred between 400 and 397 ka, inferred from the abundance of the most thermophilic foraminiferal species and was coincident with lowest sea level according to benthic isotope values. The ensuing stepwise SST decrease characterizes the overall climate deterioration preceding the increase in global ice volume by  3 ka. This cooling trend was followed by a more pronounced cold event that began at 388 ka, and that terminated in the recurrence of icebergs at the site around 382 ka. Because the water mass configuration of early MIS 11 evolved quite differently from that of the early Holocene, there is little evidence that MIS 11 can serve as an appropriate analogue for a future Holocene climate, despite the similarity in some orbital parameters.  相似文献   

15.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

16.
Paired measurements of Mg/Ca and δ18O of Globigerenoides sacculifer from an Eastern Arabian Sea (EAS) sediment core indicate that sea-surface temperature (SST) varied within 2°C and sea-surface salinity within 2 psu during the last 100 ka. SST was coldest (∼ 27°C) during Marine Isotope Stage (MIS) 4 and 2. Sea-surface salinity was highest (∼ 37.5 psu) during most of the last glacial period (∼ 60–18 ka), concurrent with increased δ18OG.sacculifer and C/N ratios of organic matter and indicative of sustained intense winter monsoons. SST time series are influenced by both Greenland and Antarctic climates. However, the sea-surface salinity time series and the deglacial warming in the SST record (beginning at ∼ 18 ka) compare well with the LR04 benthic δ18O-stack and Antarctic temperatures. This suggests a teleconnection between the climate in the Southern Hemisphere and the EAS. Therefore, the last 100-ka variability in EAS climatology appears to have evolved in response to a combination of global climatic forcings and regional monsoons. The most intense summer monsoons within the Holocene occurred at ∼ 8 ka and are marked by SST cooling of ∼ 1°C, sea-surface salinity decrease of 0.5 psu, and δ18OG.sacculifer decrease of 0.2‰.  相似文献   

17.
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice‐rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner‐fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.  相似文献   

18.
Foraminiferal assemblages were studied in northern Barents Sea core ASV 880 along with oxygen and carbon isotope measurements in planktonic (N. pachyderma sin.) and benthic (E clavatum) species. AMS C‐14 measurements performed on molluscs Yoldiella spp. show that this core provides a detailed and undisturbed record of Holocene climatic changes over the last 10000 calendar years. Surface and deep waters were very cold (<0°C) at the beginning of the Holocene. C. reniforme dominated the highly diverse benthic foraminiferal assemblage. From 10 to 7.8 cal. ka BP, a warming trend culminated in a temperature optimum, which developed between 7.8 and 6.8 cal. ka BP. During this optimum, the input of Atlantic water to the Barents Sea reached its maximum. The Atlantic water mass invaded the whole Franz Victoria Trough and was present from subsurface to the bottom. No bottom water, which would form through rejection of brine during winter, was present at the core depth (388 m). The water stratification was therefore greatly reduced as compared to the present. An increase in percentage of I. helenae/norcrossi points to long seasonal ice‐free conditions. The temperature optimum ended rather abruptly, with the return of cold polar waters into the trough within a few centuries. This was accompanied by a dramatic reduction of the abundance of C. reniforme. During the upper Holocene, the more opportunistic species E. clavatum became progressively dominant and the water column was more stratified. Deep water in Franz Victoria Trough contained a significant amount of cold Barents Sea bottom water as it does today, while subsurface water warmed progressively until about 3.7 cal. ka BP and reached temperatures similar to those of today. These long‐term climatic changes were cut by several cold events of short duration, in particular one in the middle of the temperature optimum and another, which coincides most probably with the 8.2 ka BP cold event. Both long‐ and short‐term climatic changes in the Barents Sea are associated with changes in the flow of Atlantic waters and the oceanic conveyor belt.  相似文献   

19.
The deglacial history of the central sector of the last British–Irish Ice Sheet is poorly constrained, particularly along major ice‐stream flow paths. The Tyne Gap Palaeo‐Ice Stream (TGIS) was a major fast‐flow conduit of the British–Irish Ice Sheet during the last glaciation. We reconstruct the pattern and constrain the timing of retreat of this ice stream using cosmogenic radionuclide (10Be) dating of exposed bedrock surfaces, radiocarbon dating of lake cores and geomorphological mapping of deglacial features. Four of the five 10Be samples produced minimum ages between 17.8 and 16.5 ka. These were supplemented by a basal radiocarbon date of 15.7 ± 0.1 cal ka BP, in a core recovered from Talkin Tarn in the Brampton Kame Belt. Our new geochronology indicates progressive retreat of the TGIS from 18.7 to 17.1 ka, and becoming ice free before 16.4–15.7 ka. Initial retreat and decoupling of the TGIS from the North Sea Lobe is recorded by a prominent moraine 10–15 km inland of the present‐day coast. This constrains the damming of Glacial Lake Wear to a period before ∼18.7–17.1 ka in the area deglaciated by the contraction of the TGIS. We suggest that retreat of the TGIS was part of a regional collapse of ice‐dispersal centres between 18 and 16 ka.
  相似文献   

20.
Fluctuations in benthic foraminiferal faunas over the last 130,000 yr in four piston cores from the Norwegian Sea are correlated with the standard worldwide oxygen-isotope stratigraphy. One species, Cibicides wuellerstorfi, dominates in the Holocene section of each core, but alternates downcore with Oridorsalis tener, a species dominant today only in the deepest part of the basin. O. tener is the most abundant species throughout the entire basin during periods of particularly cold climate when the Norwegian Sea presumably was ice covered year round and surface productivity lowered. Portions of isotope Stages 6, 3, and 2 are barren of benthic foraminifera; this is probably due to lowered benthic productivity, perhaps combined with dilution by ice-rafted sediment; there is no evidence that the Norwegian Sea became azoic. The Holocene and Substage 5e (the last interglacial) are similar faunally. This similarity, combined with other evidence, supports the presumption that the Norwegian Sea was a source of dense overflows into the North Atlantic during Substage 5e as it is today. Oxygen-isotope analyses of benthic foraminifera indicate that Norwegian Sea bottom waters warmer than they are today from Substage 5d to Stage 2, with the possible exception of Substage 5a. These data show that the glacial Norwegian Sea was not a sink for dense surface water, as it is now, and thus it was not a source of deep-water overflows. The benthic foraminiferal populations of the deep Norwegian Sea seem at least as responsive to near-surface conditions, such as sea-ice cover, as they are to fluctuations in the hydrography of the deep water. Benthic foraminiferal evidence from the Norwegian Sea is insufficient in itself to establish whether or not the basin was a source of overflows into the North Atlantic at any time between the Substage 5e/5d boundary at 115,000 yr B.P. and the Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号