首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
Simultaneous measurements of the 6300 Å airglow intensity, the electron density profile, and F-region ion temperatures and vertical ion velocities taken at the Arecibo Observatory in March 1971 are utilized in the height integrated continuity equation to extract the number of photons'of 6300 Å emitted per recombination. After accounting for quenching of O(1D) and the electrons lost via NO+ recombination, the efficiency of O(1D) production by the dissociative recombination of O2+ is determined to be 0.6 ± 0.2 including cascading from the O(1S) state. The uncertainty includes both random measurement errors and estimates of possible systematic errors.  相似文献   

2.
A major loss process for the metastable species, O+(2D), in the thermosphere is quenching by electrons
O+(2D) + e → O+(4S) + e
.To date no laboratory measurement exists for the rate coefficient of this reaction. Thermospheric models involving this process have thus depended on a theoretically calculated value for the rate coefficient and its variation with electron temperature. Earlier studies of the O+(2D) ion based on the Atmosphere Explorer data gathered near solar minimum, could not quantify this process. However, Atmosphere Explorer measurements made during 1978 exhibit electron densities that are significantly enhanced over those occurring in 1974, due to the large increases that have occurred in the solar extreme ultraviolet flux. Under such conditions, for altitudes ? 280 km, the electron quenching process becomes the major loss mechanism for O+(2D), and the chemistry of the N+2 ion, from which the O+(2D) density is deduced, simplifies to well determined processes. We are thus able to use the in situ satellite measurements made during 1978 to derive the electron quenching rate coefficient. The results confirm the absolute magnitude of the theoretical calculation of the rate coefficient, given by the analytical expression k(Te) = 7.8 × 10?8 (Te/300)?0.5cm3s?1. There is an indication of a stronger temperature dependence, but the agreement is within the error of measurement.  相似文献   

3.
Measurements of N2+ and supporting data made on the Atmosphere Explorer-C satellite in the ionosphere are used to study the charge exchange process
O+(2D)+N2kN+2+O
The equality k = (5 ± 1.7) × 10?10cm3s?1. This value lies close to the lower limit of experimental uncertainty of the rate coefficient determined in the laboratory. We have also investigated atomic oxygen quenching of O+(2D) and find that the rate coefficient is 2 × 10?11 cm3s?1 to within approximately a factor of two.  相似文献   

4.
The quenching rate kN2 of O(1D) by N2 and the specific recombination rate α1D of O2+ leading to O(1D) are re-examined in light of available laboratory and satellite data. Use of recent experimental values for the O(1D) transition probabilities in a re-analysis of AE-C satellite 6300 Å airglow data results in a value for kN2 of 2.3 × 10?11 cm3s?1 at thermospheric temperatures, in excellent agreement with the laboratory measurements. This implies a value of JO2 = 1.5 × 10?6s?1 for the O2 photodissociation rate in the Schumann-Runge continuum. The specific recombination coefficient α1D = 2.1 × 10?7cm3s?1 is also in agreement with the laboratory value. Implications for the suggested N(2D) + O2 → O(1D) + NO reaction are discussed.  相似文献   

5.
In this paper we confirm an earlier finding that the reaction
constitutes a major source of OI 6300 Å dayglow. The rate coefficient for this reaction is found to be consistent with an auroral result, namely k1 ≈ 6 × 10?12cm3s?1. We correct an error in an earlier publication and demonstrate that reaction (1) is consistent with the laboratory determined quenching rate for the reaction
where k2 = 2.3 × 10?11cm3s?1. Dissociative recombination of O+2 with electrons is found to be a major daytime source in summer above ~220 km.  相似文献   

6.
Radiative recombination of N and O provides a significant source for auroral emission in the γ and δ bands of NO with selective population of vibrational levels in the A2Σ+ and C2Π states. This mechanism may account for emissions detected near 2150 Å. Models are derived for the auroral ionosphere and include estimates for the concentrations of N and NO. The concentration of NO is estimated to have a value of about 108 cm?1 near 140 km in an IBC III aurora. The corresponding density for N is about 5 × 107cm?3 and the concentration ratio NO+O2+ has a value of about 5.5.  相似文献   

7.
Previous studies based on radio scintillation measurements of the atmosphere of Venus have identified two regions of small-scale temperature fluctuations located in the vicinity of 45 and 60 km. A global study of the fluctuations near 60 km, which are consistent with wind-shear-generated turbulence, was conducted using the Pioneer Venus measurements. The structure constants of refractive index fluctuations cn2 and temperature fluctuations cT2 increase poleward, peak near 70° latitude, and decrease over the pole; cn2 varies from 2 × 10?15 to 1.5 × 10?14m23 and cT2 from 4 × 10?3 to 7 × 10?2°K2m?23. These results indicate greater turbulent activity at the higher latitudes. In the region near 45 km the refractive index fluctuations and the corresponding temperature fluctuations are substantially lower. Based on the analysis of one representative occultation measurement, cn2 = 2 × 10?16m?23and cT2 = 7.3 × 10?4°K2m?23 in the 45-km region. The fluctuations in this region also appear to be consistent with wind-shear-generated turbulence. The turbulence level is considerably weaker than that at 60 km; the energy dissipation rate ε is 4.9 × 10?5m2sec?3 and the small-scale eddy diffusion coefficient K is 2 × 103 cm2 sec?1.  相似文献   

8.
The cross-section for dissociative photoionization of hydrogen by 584 Å radiation has been measured, yielding a value of 5 × 10?20 cm2. The process can be explained as a transition from the X1 Σg+ ground state to a continuum level of the X2 Σg+ ionized state of H2 The branching ratio for proton (H+) vs molecular ion (H2+) production at this energy is 8 × 10?3. This process is quite likely an important source of protons in the Jovian ionosphere near altitudes where peak ionization rates are found.  相似文献   

9.
Recent laboratory measurements of the deactivation rate constants for O(1S) have suggested that the dominant production mechanism for the green line in the nightglow is a two-step process. A similar mechanism involving energy transfer from an excited state of molecular oxygen is considered as a potential source of the OI (5577 Å) emission in the aurora. It is shown that the mechanism, O2 + e → O21 + e O21 + O → O2 + O(1S), is consistent with auroral observations; the intermediate excited state has been tentatively identified as the O2(c1?u) state. For the proposed energy transfer mechanism to be the primary source of the auroral green line, the peak electron impact cross-section for O21 production must be approximately 2 × 10?17 cm2.  相似文献   

10.
Measurements of the emission intensities of the 557.7 nm line and Herzberg bands and of O(3P) concentrations carried out on two coordinated rocket flights at South Uist during the night of 8/9 September 1975 are presented. An examination of the 557.7 nm emission and O(3P) data on the basis of recent data on relevant rate coefficients has shown that the results can be interpreted on the basis of the Barth mechanism for the production of O(1S) atoms but not the Chapman mechanism. Evidence is provided that the A3Σ+u state of O2 could be responsible for the O(1S) production in the Barth mechanism. Values of the rate coefficients involved are deduced from a comparison of the 557.7 nm and Herzberg emission rates.  相似文献   

11.
12.
Incoherent scatter observations of the ionospheric F1 layer above Saint-Santin (44.6°N) are analyzed after correction of a systematic error at 165 and 180 km altitude. The daytime valley observed around 200 km during summer for low solar activity conditions is explained in terms of a downward ionization drift which reaches ?30 m s?1 around 180 km. Experimental determinations of the ion drift confirm the theoretical characteristics required for the summer daytime valley as well as for the winter behaviour without a valley. The computations require an effective dissociative recombination rate of 2.3 × 10?7 (300/Te)0.7 (cm3s?1) and ionizing fluxes compatible with solar activity conditions at the time when the valley is observed.  相似文献   

13.
Theoretical electron density profiles are calculated for the topside ionosphere to determine the major factors controlling the profile shape. Only the mean temperature, the vertical temperature gradient and the O+H+ ion transition height are important. Vertical proton fluxes alter the ion transition height but have no other effect on the profile shape. Diffusive equilibrium profiles including only these three effects fit observed profiles, at all latitudes, to within experimental accuracy.Values of plasma temperature, temperature gradient and ion transition height htT were determined by fitting theoretical models to 60,000 experimental profiles obtained from Alouette l ionograms, at latitudes of 75°S–85°N near solar minimum. Inside the plasmasphere hT varies from about 500 km on winter nights to 850 km on summer days. Diurnal variations are caused primarily by the production and loss of O+ in the ionosphere. The approximately constant winter night value of hT is close to the level for chemical equilibrium. In summer hT is always above the equilibrium level, giving a continual production of protons which travel along lines of force to aid in maintaining the conjugate winter night ionosphere. Outside the plasmasphere hT is 300–600 km above the equilibrium level at all times. This implies a continual near-limiting upwards flux of protons which persists down to latitudes of about 60° at night and 50° during the day.  相似文献   

14.
The problem of the theoretical computation of the emission intensities and ion composition in a weak aurora which has been preceded by a stronger event is examined. For this purpose a model auroral precipitation consisting of biexponential primaries is considered. The softer of the two components is brighter, and begins to decay after remaining steady for ten to fifteen minutes. The other, harder component starts to build up at that instant. Our results suggest that at least a part of the high n(NO+)n(O2+)orI(1·27 μ)I(3914 A?) ratios could be attributed to the retention, by the atmosphere, of the memory of previous auroral precipitations. Thus, the serious energy paradox in the context of 1·27 μ intensity need not arise, and, in the context of the large NO+ density, it may perhaps be unnecessary to invoke any major conversion of O2 to NO thus avoiding the associated energy problem.  相似文献   

15.
Laboratory data shows that the reaction of protons with methane proceeds at thermal ion energies to give both CH3+ and CH4+ ions in the ratio CH3+CH4+ = 1.5 ± 0.3. The overall rate constant for the reaction is 3.8 ± 0.3 × 10?9 cm3/sec. This reaction may lead to the formation of hydrocarbon ions in the lower ionosphere of Jupiter, and the significance of this process for formation of hydrocarbons and HCN in the atmosphere of Jupiter is discussed.  相似文献   

16.
The photodissociation of water vapour in the mesosphere depends on the absorption of solar radiation in the region (175–200 nm) of the O2 Schumann-Runge band system and also at H-Lyman alpha. The photodissociation products are OH + H, OH + H, O + 2H and H2 + O at Lyman alpha; the percentages for these four channels are 70, 8, 12 and 10%, respectively, but OH + H is the only channel between 175 and 200 nm. Such proportions lead to a production of H atoms corresponding to practically the total photodissociation of H2O, while the production of H2 molecules is only 10% of the H2O photodissociation by Lyman alpha.The photodissociation frequency (s?1) at Lyman alpha can be expressed by a simple formula
JLyαH2O=4.5 ×10?61+0.2F10.7?65100exp[?4.4 ×10?19 N0.917]
where F10.7 cm is the solar radioflux at 10.7 cm and N the total number of O2 molecules (cm?2), and when the following conventional value is accepted for the Lyman alpha solar irradiance at the top of the Earth's atmosphere (Δλ = 3.5 A?) qLyα,∞ = 3 × 1011 photons cm?2 s1?.The photodissociation frequency for the Schumann-Runge band region is also given for mesospheric conditions by a simple formula
JSRB(H2O) = JSRB,∞(H2O) exp [?10?7N0.35]
where JSRB,∞(H2O) = 1.2 × 10?6 and 1.4 × 10?6 s?1 for quiet and active sun conditions, respectively.The precision of both formulae is good, with an uncertainty less than 10%, but their accuracy depends on the accuracy of observational and experimental parameters such as the absolute solar irradiances, the variable transmittance of O2 and the H2O effective absorption cross sections. The various uncertainties are discussed. As an example, the absolute values deduced from the above formulae could be decreased by about 25-20% if the possible minimum values of the solar irradiances were used.  相似文献   

17.
Rate coefficients for the association reactions of NO+ ions with N2 and CO2, O2+ with N2, and N+ and N2+ with N2 have been determined as a function of gas temperature in a laboratory experiment employing a variable-temperature drift-tube apparatus. The measured rate coefficients were fitted to power laws of the form k = C (T300)x where the exponents x ranged from 2.2 to 4.3. The strong temperature dependence observed in the case of the reaction of NO+ with N2 (x = 4.3) supports the thesis by Arnold et al. (1979) that the temperature variability of D-region ion densities is a result of this reaction step in the ion clustering sequence.  相似文献   

18.
The calculated radiative lifetime of the metastable ion is 6.4 × 10?3s. Used in conjunction with the results of measurements by Erdman, Espy and Zipf this sets 1.3 × 10?18 cm2 as the upper limit to the cross section for the formation of N+(5S) in e - N2 collisions at 100eV which leaves the possibility that the process is responsible for the λ2145A? feature in auroras only just open. The cross section for the formation of N+(5S) in e — N collisions is large. However for this process to lead to the observed intensity of λ2145A? relative to λ3914A? the N:N2 abundance ratio would have to be as high as 1.6 × 10?2.  相似文献   

19.
Laboratory cross-section data on the excitation of the OII(2s 2p44P → 2s2 2p34S; λ834 Å) resonance transition and on the production of O+ and O2+ ions by electron impact on atomic oxygen are used to show that the ratio σ(λ834 A?)σ(O+ + O2+) is nearly constant for incident electron energies > 50 eV. Under auroral conditions, the total electron-ion pair production rate from electron impact on O can be inferred from λ834 Å volume emission rate measurements using the result that η(O+ + O2+)$?8.4η(λ834 A?). These findings, along with earlier work on the simultaneous ionization-excitation of the 1 Neg (0,0) band of N2+ and the 1 Neg (1, 0) band of O+2, allow the specific ionization rates for the principal atmospheric constituents (O+, O+2, N+2), for the multiply-ionized species (O2+, O2+2, N2+2), and for the dissociatively produced atomic ions to be inferred in aurora from remote satellite observations.  相似文献   

20.
The part that the energy transfer reaction N2(A3u+) + O(3P) → N2(X1g+) + O(1S) plays in the excitation of the auroral green line has been investigated. The contribution is estimated to be 40 per cent in this case, containing pulsating aurora in class IBC 1. Due to greater quenching of the A3u+ state, the centroid of the VK emission is displaced 10 km upwards of the green line height, which is centred at 110 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号