首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper cites evidence to show that the Organic content of Recent carbonate facies is as readily preserved by entombment as it is in the torrigenous facies and that there is little difference in composition or proportion of organic constituents in terrigenous and some types of carbonate facies. The variations in organic content with grain size follow those for terrigenous facies. Organic constituents in Recent limey sediments are at least as reduced as they are in terrigenous facies. The tendency toward reduction of organic constituents to petroleum bitumens and petroleum is just as obvious and as rapid as in terrigenous. Thus it is quite possible for syngenetic petroleum to be entombed in appropriate carbonate facies.—B. N. Cooper  相似文献   

2.
Carbonate deposits, which unconformably overlie the Palaeozoic bedrocks, extensively occur in the base of the Tertiary lake succession in the half‐graben Shulu Sag, central Hebei Province, North China. This study focuses on the basal carbonate successions on the hinged western slope. Based on seismic, borehole and core data, nine facies are identified in the carbonate successions, and are further grouped into five facies associations: mid‐proximal alluvial fan, distal alluvial fan, fan fringe, moderately deep lake and deep lake. The first two facies associations constitute alluvial fans formed by debrisflows at the edge of lake and are dominated by mounded‐ to lobate‐shaped, matrix‐ to clast‐supported carbonate rudstones with minor calcretes in the lowermost rudstone units and basinward increase in interfingering with lacustrine carbonate facies. The fan fringe, moderately deep lake and deep lake associations are dominated by pebbly carbonate arenites (or rare carbonate arenites), calcisiltite‐calcilutites, and varve‐like calcilutites, calcareous shales and oil shales, respectively. Widespread occurrences of fine‐grained limestone packages containing varve‐like organic‐rich laminations, minor authigenic glauconite and pyrite, and planktonic and plant fossils suggest a meromictic, anoxic deep lake under a semi‐humid to humid climate, probably with a connection to marine basins. Similarities in lithology and fossil assemblages (e.g. trilobites) of lithoclasts with those of the Mid‐Upper Cambro‐Ordovician bedrock carbonates suggest that the clastic and dissolved carbonate loads were sourced from this Lower Palaeozoic catchment, and shed off the surrounding highlands into the basin. These carbonate facies associations represent the lake lowstand and transgressive deposits of the basal third‐order sequence (Ia) in which the highstand deposits are composed of lacustrine siliciclastics. During the lake lowstand stage (or initiation of basin‐filling) under an intermediate climate, carbonate alluvial fans occurred mostly subaerially at the bottom of the hinged slope with a narrow, shallow lake zone basinwards, and locally were perched within the palaeovalley on the mid‐upper slope. During the transgressive (deepening) stage under a semi‐humid to humid climate, carbonate alluvial fans became smaller in size and episodically stepped backwards upon the slope, with greatly expanded and deepened lake. Nevertheless, the carbonate system was switched to an exclusively siliciclastic system during the highstand stage. The exhumation and erosion of the Mid‐Lower Cambrian bedrock dominated by siliciclastics was probably the cause due to further uplift of the drainage basin. All these facts indicate that the carbonate deposition in the Shulu Sag was mostly controlled by the interactions of tectonics, climate and provenance.  相似文献   

3.
The sedimentology of the Drosgol Formation is summarised in terms of nine sedimentary facies with particular attention given to the pebbly mudstones and major arenites. Sedimentary facies, geometry and palaeocurrents suggest the interpretation of the major arenites as inner-fan channel deposits locally preserving their levees. The lower less-organised part of the formation suggests a slope-base environment with small-scale channelling, slumping and development of mass-flow deposits. A new definition of the upper boundary of the formation is proposed and map references are given to key localities.  相似文献   

4.
Abstract

— Stratigraphic and petrographic analysis of the Cretaceous to Eocene Tibetan sedimentary succession has allowed us to reinterpret in detail the sequence of events which led to closure of Neotethys and continental collision in the NW Himalaya.

During the Early Cretaceous, the Indian passive margin recorded basaltic magmaüc activity. Albian volcanic arenites, probably related to a major extensional tectonic event, are unconformably overlain by an Upper Cretaceous to Paleocene carbonate sequence, with a major quartzarenite episode triggered by the global eustatic sea-level fall at the Cretaceous/Tertiary boundary. At the same time, Neotethyan oceanic crust was being subducted beneath Asia, as testified by calc-alkalic volcanism and forearc basin sedimentation in the Transhimalayan belt.

Onset of collision and obduction of the Asian accretionary wedge onto the Indian continental rise was recorded by shoaling of the outer shelf at the Paleocene/Eocene boundary, related to flexural uplift of the passive margin. A few My later, foreland basin volcanic arenites derived from the uplifted Asian subduction complex onlapped onto the Indian continental terrace. All along the Himalaya, marine facies were rapidly replaced by continental redbeds in collisional basins on both sides of the ophiolitic suture. Next, foreland basin sedimentation was interrupted by fold-thrust deformation and final ophiolite emplacement.

The observed sequence of events compares favourably with theoretical models of rifted margin to overthrust belt transition and shows that initial phases of continental collision and obduction were completed within 10 to 15 My, with formation of a proto-Himalayan chain by the end of the middle Eocene.  相似文献   

5.
The carbonate platforms of the Wetterstein Formation of the Eastern Alps (Drau Range and Northern Calcareous Alps) show a distinct facies zonation of reefs and lagoons. While some lagoonal areas were episodically emerged and formed lagoonal islands, others remained permanently flooded. The scale of near surface, meteoric or marine diagenesis was related to this lagoonal topography. At shallow burial depth, cementation was dominated by altered marine solutions, which additionally caused recrystallization of metastable constituents of the sediment and earlier marine cements (high magnesian calcite, aragonite) connected with a carbon and oxygen isotopic change to more negative values. Deeper burial cementation shows a succession with two types of saddle dolomite and three types of blocky calcite. Carbon and oxygen isotopic values of these cements show a trend towards more negative values from the first to the last generation, in the following succession: clear saddle dolomite—zoned blocky calcite—cloudy saddle dolomite—post-corrosion blocky calcite—replacive blocky calcite. Fluid inclusion studies of the carbonate cements are interpreted to indicate a deeper burial temperature development that first increases from 175 to 317°C, followed by a temperature decrease to 163–260°C, and subsequent increase up to 316°C, whereby the samples of the Drau Range always show the lowest values. Calculations of the isotopic composition of the water, from which the carbonate cements were precipitated, yielded positive δ18O values from 6.66 to 17.81%o (SMOW), which are characteristic for formation and/or metamorphic waters. Also, the isotopic compositions of the palaeofluids probably changed during deeper burial diagenesis, following the temperature development.  相似文献   

6.
Examination of the Mg and Sr concentrations in carbonate rocks in a number of sections provides the basis for the establishment of two geochemical facies within the region studied: (1) a basinal facies, including the axial part of the Danish Subbasin and the North Sea Central Graben, indicating relatively stable geochemical conditions; and (2) an eastern marginal facies in the Danish Subbasin reflecting unstable geochemical conditions and distinguished by partial cementation and increasing Mg and Sr concentrations towards the northeastern limits of the basin. A slight microtextural variation in the chalk between the basinal and marginal facies indicates that the origin and composition of the biogenic carbonate components strongly influence the bulk-rock geochemistry.

The elemental distribution reveals a negative correlation between the Mg and Sr concentrations in the topmost Maastrichtian chalk, expressed by increasing Mg and decreasing Sr upwards towards the Maastrichtian/Danian boundary. This relation occurs in both geochemical facies and in all sections studied and is believed to have been governed by changing physicochemical conditions in the late Maastrichtian sea.  相似文献   


7.
通过铸体薄片、物性测试、扫描电镜等资料,对黔南坳陷平塘甘寨二叠系茅口组沉积相与储层特征进行深入分析,认为贵州平塘甘寨茅口组主要的岩石类型为亮晶-微晶生屑灰岩、生物灰岩、微晶灰岩、内碎屑亮晶灰岩、硅质岩、瘤状灰岩和含燧石灰岩等。茅口组生物种类较多,有介形虫、腹足、腕足、三叶虫、藻类、棘屑、蜒、珊瑚、海百合茎等。上述岩石学特征和生物组合指示平塘甘寨地区中二叠统茅口组为开阔碳酸盐台地沉积环境,包括台内滩和滩间两个亚相。储层特征分析结果表明,茅口组储集空间以晶间溶孔和晶间孔为主,具有明显的低孔低渗特征。局部溶蚀孔、构造裂缝相对较发育,对改造储层的孔渗性有重要的贡献。储层类型为碳酸盐岩裂缝-孔隙型储层,储层质量及发育部位受沉积相、成岩作用和构造活动多因素的控制。  相似文献   

8.
湘西—黔东地区寒武系发育完整,是一套从黑色岩系到碳酸盐岩的沉积序列。下寒武统清虚洞组由灰岩段和白云岩段组成,纵向上构成总体向上海水变浅的沉积相序列,同时反映了缓坡型碳酸盐岩台地的发育过程。该组空间上从北西至南东可识别出潮坪相、局限台地相粉细晶云岩、台地边缘浅滩相粉细晶灰岩和台地边缘(滩)丘相微晶灰岩、浅-深缓坡相、陆棚相泥灰岩、台地前缘盆地等沉积。研究表明,地层岩性、岩相古地理对铅锌矿具有明显的控制作用,微晶丘是主要容矿层,与微生物和海底热水关系密切。铅锌成矿明显与浊流沉积和风暴沉积等事件沉积相关,浊积岩、微晶丘、砾(粒)屑灰岩构成一完整的铅锌控矿序列。  相似文献   

9.
For the safe disposal of high-level radioactive waste, different host rocks are currently being considered. The favorable properties of clay are low permeability, some retention capacity concerning radionuclides, and the ability to self-seal cracks and fissures, e.g. by swelling or time-dependent compaction creep. In Switzerland, the Jurassic Opalinus Clay is envisaged as a potential host rock which—at Mont Terri—is subdivided into the sandy, shaly, and carbonate-rich facies, the latter being less abundant. For long-term safety assessments, the understanding of the relations of properties (e.g. mineralogical composition and microstructure) and performance (e.g. mechanical behavior) of clays and claystones is essential. In the case of the sandy Opalinus Clay, the mechanical strength increases with increasing carbonate content, because carbonates form the matrix. The mineralogical investigation of a set of sandy facies samples proved a significantly larger carbonate content (20–40 mass %) when compared to the shaly facies (10–20 mass %). The carbonates of the shaly Opalinus Clay, on the other hand, are mostly localized fossils aligned parallel to the bedding, acting as predetermined breaking points. Image analysis of SEM images of polished sections proved the determined microstructural differences. In addition, carbonate particles of the sandy facies are mostly isometric, whereas carbonate particles of the shaly facies cover a greater range of shapes. The mechanical tests were accompanied by investigations of the p- and s-wave velocities, which revealed that the anisotropy of the sandy facies is less pronounced than sedimentological analyses would suggest. The mechanical strength, which, for the first time, presents results of real triaxial tests of the sandy facies. The samples of the sandy facies exhibit a failure strength of σ eff,B, approximately twice as high as was found for the shaly facies considering the deformation axis parallel to the bedding. Similar values were obtained when measuring perpendicularly to the bedding.  相似文献   

10.
黔南宾夕法尼亚亚纪生物礁类型及其特征   总被引:1,自引:0,他引:1  
黔南宾夕法尼亚亚纪海域广大,普遍发育了一套台地相碳酸盐岩.该区碳酸盐台地浅水非常适宜生物生存,特别是底栖生物大量繁盛,生物造岩作用十分强烈.宾夕法尼亚亚纪地层中含有极为丰富的底栖生物化石,其中包括多种造礁生物并建造了不同类型的生物礁,主要礁体有:Fomitchevella 珊瑚骨架礁、叶状藻骨架一障积礁、Ivanovia cf.manchurica珊瑚骨架一覆盖礁、未名造礁生物骨架礁、黏结生物Tubiphytes黏结礁.生物礁不仅种类较多,而且数量可观,反映了该时期生物礁的发展达到了较高的水平,应该是石炭纪生物礁发育的一次高潮期.  相似文献   

11.
Facies characterization of Piacenzian (late Pliocene) carbonate sediments of the Guitar Formation in Car Nicobar Island,India and the subsequent integration of paleoecological data have been applied to interpret the paleoenvironment of the coralline algal-reef deposits.Thin-section analysis reveals that Amphiroa,Corallina and Jania are the dominant geniculate corallines,while Lithothamnion,Mesophyllum,Phymatolithon,Lithophyllum,Spongites and Lithoporella are the major non-geniculate corallines contributing to the sedimentary facies.Numerous small and larger benthic foraminifera also dominate the biogenic assemblages.Corals,barnacle shells,echinoid spines,fragments of bryozoans,mollusks and ostracodes are the subordinate constituents.Grainstones dominate the studied facies while packstones and boundstones (with wackestone elements) are the sub lithofacies showing a fair representation.Six carbonate facies presenting a complete reef complex have been distinguished that were deposited in shallow intertidal,back-reef shelf/lagoon,reef and deeper fore-reef shelf settings.Evidences of coralline algal and benthic foraminiferal assemblages,taphonomic signatures of abrasion and fragmentation,grain size,angularity and encrustation indicate a shallow to relatively deeper bathymetric horizon of approximately 10-60 m that corresponds to a regime of high to moderate hydrodynamic conditions.  相似文献   

12.
REINHARD HESSE 《Sedimentology》1987,34(6):1055-1077
In the diagenetic history of calcareous sandstones, silicacementation and silicification may be followed by carbonatecementation and replacement and vice versa, and the change-over from one to the other may occur more than once. This is well illustrated by calcareous and siliciclastic turbidites of the Gault Formation (Aptian to Albian) of the Eastern Alps which have been interpreted as deep-sea trench plain and deep-sea fan deposits. In these turbidites silicification selectively affects ooids and a few other biogenic carbonate fragments rich in organic matter (algae and bryozoans) which form a small fraction of the bulk sediment. The type and sequence of diagenetic changes are largely controlled by host-rock composition and may vary vertically within individual beds as a result of compositional grading. In the carbonate turbidites, silicification follows widespread calcite cementation. The process is slow, resulting in relatively coarsely crystalline replacement quartz. In ooids with quartz nuclei, rim-quartz forms mostly monocrystalline ‘overgrowths’ by outward replacement of the concentrically laminated carbonate cortex. This type of silicification is often incomplete leaving parts of the ooid cortices unaffected. In quartz arenites and sublitharenites silicification precedes calcite cementation. There the process is rapid, forming microcrystalline quartz. Even if the ooid nucleus consists of quartz, a syntaxial ‘overgrowth’ does not normally form. The replacement quartz is almost always polycrystalline. Late-stage diagenetic calcite and dolomite which develop euhedral crystal shapes and cut across grain boundaries may replace the earlier secondary rim-quartz of the ooids as well as other minerals. Possible sources of the silica are pressure-solution of quartz, dissolution of opaline silica of radiolarian tests and of sponge spicules, and feldspar in the host bed. In a number of examples an increase in the degree of silicification can be observed towards the lower bedding planes of individual turbidites requiring an additional external source of silica which seems to necessitate cross-formational flow of pore solutions. Silicification in both the carbonate and the siliciclastic turbidites probably took place at about the same time; in the carbonate turbidites it was preceded, however, by calcite cementation, which significantly reduced porosity and permeability before silicification took place. The greater degree of alteration experienced by the Gault turbidites of the Falknis and Tasna Nappes, which are more internal structural units of the Alps (compared to the Flysch Zone of the Eastern Alps), is reflected by the growth of quartz ‘beards’ and spikes from the ooids in the direction perpendicular to maximum stress. This is the only case observed where the rim quartz of the ooids grows beyond the original grain boundaries.  相似文献   

13.
论广西平果铝土矿成因与沉积相的关系   总被引:1,自引:0,他引:1  
一、概述被列为我国九大有色金属基地之一的广西平果铝土矿(图1),以品位高,规模大著称。据引滇隆起民明。①南{十一L琳断裂②埂娜一罗甸断裂③弥私一盘县断裂妞,凭样一贵县断裂图l研究区大地构造  相似文献   

14.
The upper lower Proterozoic to middle Proterozoic Sims Formation rests unconformably on lower Proterozoic strata of the Knob Lake Group of the Labrador Trough sequence. The 700 m-thick Sims Formation consists of basal fluvial arkoses and conglomerates (about 100 m) and an upper sheet-like sand body (about 600 m thick) composed of quartz arenites and minor quartz-clast conglomerates. This upper unit is interpreted as beach, shoreface, tidal and shallow-shelf deposits. The lowest 70 m of the quartz arenite unit appear to be of fluvial origin, but probably were formed by reworking of quartzose sands produced in coastal environments during a period of elevated sea level.The lower Sims Formation probably represents molasse shed from either the Hudson or Labrador orogens. Rivers flowed northwest away from these upland areas. The upper part of the Sims Formation records deposition during a period of slow, steady sea-level rise in an ocean that deepened to the west.The Sims Formation outliers are remarkably similar to outliers of the Sakami Formation of northern Quebec, a unit that has a poorly-constrained early to middle Proterozoic age. If these units are correlative, a hypothesis supported mainly by identical facies and facies sequences, then the transgressive quartz arenites would originally have covered an area of at least 200 000 km2.  相似文献   

15.
Research over the past several decades has clearly demonstrated that changes in the ocean environment have had major impacts on carbonate systems. Changes in climate, ocean circulation and seafloor spreading rates have influenced temperature and seawater chemistry, including carbonate saturation state and nutrient availability, and thereby have determined boundary conditions for the biota that form carbonate platforms. In turn, the biota determine accumulation rates and facies zonations, thus controlling platform geometry and facies dynamics. In the first section of this paper, we examine how nutrient availability influences carbonate facies associations. We first discuss the role of temperature and nutrient gradients in the modern ocean and their influence on biotic associations. Then we discuss how carbonate sedimentation can be characterized along nutrient gradients. In the second section, we review proxies currently used to reconstruct paleoproductivity in open ocean environments and discuss their applicability to neritic carbonate systems. We highlight the variety of existing proxies and their limitations, and suggest that multiple lines of evidence are needed for valid interpretations. Our short review discusses sedimentological, biogenic, and geochemical proxies that can be used to reconstruct past nutrient fluxes and to constrain paleoceanographic controls over the distribution of carbonate associations. However, it also reveals that more data and case studies are needed that integrate shallow and deep water carbonate sequences and elucidate the links between temperature vs. nutrient supplies changes and facies in ancient carbonate sequences.
Maria MuttiEmail:
  相似文献   

16.
四川盆地东北部长兴期沉积特征与沉积格局   总被引:65,自引:1,他引:64  
四川盆地东北部长兴组(大隆组)为海洋环境的产物,根据沉积特点,可以分为碳酸盐台地沉积体系和盆地沉积体系。碳酸盐台地沉积体系又可进一步分为局限台地、开阔台地、台地边缘礁滩及缓坡等沉积相。在详细研究分析各沉积体系的沉积特点的基础上,探讨了该期沉积相带的空间分布,提出了不存在“开江一梁平”海槽的认识。笔者等认为在“开江梁平海槽”区域内,长兴组只是水体相对台地较深环境(台棚环境)的产物,为碳酸盐缓坡,不宜称为海槽。指出台地边缘浅滩及生物礁是储层最有利相带,礁白云岩及颗粒白云岩等是储层的有利微相。研究区的生物礁为碳酸盐台地边缘缓坡点礁群,沿着台地边缘断续分布。  相似文献   

17.
Gamma‐ray curves from surface outcrops together with U–Pb SHRIMP zircon dating are used to redefine the evolution of a Palaeoproterozoic sandy dolostone succession from northern Australia. This case history indicates that gamma‐ray logging of surface sections should accompany lithostratigraphic logging or an inadequate interpretation of stratigraphic evolution is a likely outcome. The 1200 m‐thick Nathan Group from the McArthur River area had previously been interpreted as a more‐or‐less continuous package of carbonates deposited in lacustrine and associated shallow‐water environments. Now it is seen to comprise the preserved remnants of three truncated, second‐order supersequences—the Lawn, Wide and Doom Supersequences—each a few hundred metres thick and each deposited over a time period of a few million years. These supersequences are separated by major stratigraphic breaks each approaching probably 10 million years duration. Each supersequence comprises several third‐order sequences which themselves contain higher‐order cycles. These were deposited in a series of continental, shoreline, and inner to outer carbonate platform environments. Transgressive, high‐energy, fluvial to marginal marine, mixed clastic‐carbonate facies dominate most of the sequences. The middle, Wide Supersequence, however, preserves deeper water (mostly sub‐storm‐wave‐base) stromatolitic facies in one sequence, and storm‐reworked clastics in another. These are interpreted as condensed intervals deposited around their respective maximum flooding surfaces and are succeeded by regressive facies that probably represent highstand systems tracts. New correlations between these 1615–1575 Ma sandy carbonate successions of the McArthur Basin (Amos, Balbirini and Dungaminnie Formations) and time‐equivalent largely clastic successions in the Lawn Hill area (Lawn Hill and Doomadgee Formations), some 400 km to the southeast, are proposed.  相似文献   

18.
Bulk magnetic susceptibility measurements on sedimentological samples from all geological periods have been used widely in the last two decades for correlations and as a proxy for sea‐level variations. This paper explores the link between magnetic susceptibility, depositional setting and environmental parameters. These environmental parameters include distal–proximal transects, microfacies successions and fourth‐order trends on different carbonate platform types (platform, ramp, carbonate mound or atoll) during different Devonian stages (Eifelian, Givetian and Frasnian). Average magnetic susceptibility values over a distal–proximal‐trending facies succession vary markedly with depositional setting. On carbonate platforms, average magnetic susceptibility generally increases towards the top of shallowing‐upward sequences. On a distal–proximal transect, average magnetic susceptibility is intermediate for the deepest facies, decreases for the reef belts and increases to a maximum in the back‐reef zone. In ramps and atolls, magnetic susceptibility trends clearly differ; average magnetic susceptibility generally decreases towards the top of shallowing‐upward sequences and is highest in the deepest facies. The strong relationship between magnetic susceptibility, facies and sequences implies a strong environmental influence. However, the different responses in the different platform types suggest that sea‐level changes leading to variation in detrital input is not the only parameter controlling average magnetic susceptibility values. Other primary or secondary processes also probably influenced magnetic mineral distribution. Primary processes such as carbonate production and water agitation during deposition are probably key factors. When carbonate production is high, the proportion of magnetic minerals is diluted and the magnetic susceptibility signal decreases. High water agitation during deposition will also selectively remove magnetic minerals and will lead to low average magnetic susceptibility values. These parameters explain the lowest values observed on the reef platform, inner ramp and atoll crown, which are all in areas characterized by higher carbonate production and greater water agitation during deposition. The lowest values observed in the lagoon inside the atoll crown can be related to detrital isolation by the atoll crown. However, other parameters such as biogenic magnetite production or diagenesis can also influence the magnetic signal. Diagenesis can change magnetism by creating or destroying magnetic minerals. However, the influence of diagenesis probably is linked strongly to the primary facies (permeability, amount of clay or organic matter) and probably enhanced the primary signal. The complexity of the signal gives rise to correlation problems between different depositional settings. Thus, while magnetic susceptibility has the potential to be an important correlation tool, the results of this investigation indicate that it cannot be used without consideration of sedimentary processes and depositional environments and without strong biostratigraphical control.  相似文献   

19.
Tourmalinite is a common rock type associated with Proterozoic strata-bound mineral deposits. Although common, it is often difficult to recognise in the field, leading to misidentification. It occurs as a conformable banded quartz-tourmaline lithological unit comprising at least 15% and as much as 50% of the rock. At Rum Jungle, tourmalinite occurs within the oldest sediments (arenites and magnesites) as distinct lenses, as facies equivalents of quartz-magnetite units and mafic schists (tuffs?) and distal equivalents of polymetallic sulfides. Distinct layering, slump folding, rip-up clasts and the association with diagenetic pyrite suggest a sedimentary environment. Enechelon fracturing of the fine-grained, light green tourmaline crystals spectacularly supports pre-deformation formation. The crystals are optically and chemically zoned parallel to the c axis, with irregular growth lamellae width — which supports a pre-regional metamorphic origin. Analyses show the tourmaline to be the Mg-rich variety “dravite”. Most tourmalinites are interpreted as subaqueous marine deposits. It is more likely that they form in lacustrine, shallow water, evaporitic environments, particularly continental rifts. Suitable B-bearing fluids can be generated by hotspring activity and mobilized by CO2-rich fluids. Association with chemical sediments suggests tourmalinites also have a chemical sediment precursor. Ample evidence at Rum Jungle supports the notion of a continental rift environment, which was the site of deposition of fluvial arenites and alkaline, evaporitic lake sediments. Localised hot-spring activity contributed B-bearing fluids which precipitated chemical sediments according to the pertaining pH, temperature etc. Diagenetic alteration produced the tourmalinite now present. These tourmalinites are comparable to those of similar age elsewhere e.g. Sullivan, Broken Hill. They can be genetically modelled upon Recent borate concentrations, all of which occur in continental rift environments.  相似文献   

20.
Petrographic and geochemical analysis of the Hamra Quartzite reservoir in the southern periphery of the Hassi Messaoud field has been undertaken. The aim is to identify the quality of these sandstones as well as their tectonic setting and possible provenance. Petrographic analysis reveals that the studied reservoir is constituted of fine- to coarse-grained sandstones in which quartz forms the principal framework mineral. The main cement phases identified in this reservoir are quartz, illite, and carbonate, precipitated in that order. The principal diagenetic factors controlling the reservoir quality are quartz overgrowths, formation of authigenic clays, and the precipitation of carbonate cement. The Hamra Quartzite reservoir is considered mature from a compositional point of view as it consists predominantly of quartz arenites. Geochemically, these sandstones have a high SiO2 content (93.28–98.79 wt%). The Hamra Quartzite deposits appear to be derived from deeply weathered (under warm–humid climate conditions) granitic–gneissic terrains or recycled sedimentary source areas. A passive margin origin is the most likely tectonic setting for the depositional environment of these arenites. The reservoir quality is strongly influenced by the relationship between the clay content and mineralogy. The combined effect of quartz overgrowth and the plugging of pores by illite have reduced both porosity and permeability. As a result, economically viable oil production in this area will depend most strongly on the combination of matrix and fracture porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号