首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the structure of magnetic field and vertical electric currents in two active regions through a comparison of the observed transverse field with the potential field, which was computed according to Neumann boundary-value problem for the Laplace equation using the observed H z -value. Electric currents were calculated from the observations of the transverse magnetic field.There exist two systems of vertical electric currents in active regions: a system of local currents and a global one. The global current is about 2 × 1012 A. In the leading part of the active regions it is directed upward, and in the tail downward.Flare activity is closely connected with the value and direction of both local and global currents: the flares tend to apear in places with upward currents. The luminosity of H flocculi is also connected with vertical electric currents; the brighter the flocculi, the more frequently they appear in places of upward electric currents.The sensitivity of H emission to the sign of the current suggests that charged particles accelerated in the upper parts of magnetic loops may be responsible for these formations. Joule heating might be important for flocculi, if plasma conductivity is about 5 × 108 c.g.s.e.A model of a flare is suggested based on current redistribution in a system of emerging loops due to changes of loop inductance.  相似文献   

2.
M. J. Hagyard 《Solar physics》1988,115(1):107-124
We have analyzed the vector magnetic field of an active region at a location of repeated flaring to determine the nature of the currents flowing in the areas where the flares initiated. The component of electric current density crossing the photosphere along the line-of-sight was derived from the observed transverse component of the magnetic field. The maximum concentrations of these currents occurred exactly at the sites of flare initiation and where the photospheric field was sheared the most. The calculated distribution of current density at the flare sites suggested that currents were flowing out of an area of positive magnetic polarity and across the magnetic inversion line into two areas of negative polarity. This interpretation was reinforced by a calculation of the source field, the magnetic field produced in the photosphere by the electric currents above the photosphere. In the vicinity of the flare sites, the calculated source field exhibited three particular characteristics: (1) maximum magnitudes at the sites of flare initiation, (2) a rotational direction where the vertical current density was concentrated, and (3) a fairly constant angular orientation with the magnetic inversion line. The source field was thus very similar to the field produced by two arcades of currents crossing the inversion line at the locations of greatest magnetic shear with orientations of about 60° to the inversion line. With this orientation, the inferred arcades would be aligned with the observed chromospheric fibrils seen in the H data so that the currents were field-aligned above the photosphere. The field thus exhibited a vertical gradient of magnetic shear with the shear decreasing upward from the photosphere. We estimated the currents in the two arcades by matching the source field derived from observations with that produced by a model of parallel loops of currents. We found that the loops of the model would each have a radius of 4500 km, a separation of 1830 km, and carry a current of 0.15 × 1012 A. Values of vertical current densities and source fields appearing in the umbrae of the two large sunspots away from the flare sites were shown to lie at or below the level of uncertainty in the data. The main source of this uncertainty lay in the method by which the 180° ambiguity in the azimuth of the transverse field is resolved in umbral areas. We thus concluded that these quantities in large umbrae should be treated with a healthy skepticism. Finally, we found that the source field at the flare sites was produced almost entirely by the angular difference between the observed and potential field and not by the difference in field intensity.  相似文献   

3.
We compare large-scale filtergrams of a hitherto neglected class 1B flare with previously published vector magnetograms and maps of photospheric longitudinal electric current density (Hagyard et al., 1985). The vector magnetic fields were mapped simultaneously with the eruption of this flare. We find a coincidence, to within the ±2″ registration accuracy of the data, between the flare kernels and the locations of maximum shear and of peak values in the longitudinal electric current density. The kernels brighten in a way which implies that the preflare heating and the main release of flare energy are spatially coincident within the limits of resolution (≈2″). A pronounced magnetic shear exists in the vertical direction at the location of the strongest flare kernels. We provide evidence that the electric currents could be maintained by the energy stored in the sheared transverse magnetic field and that the amount of energy released is proportional to the amount stored. These circumstances are consistent with theories in which flares are triggered by plasma instabilities due to surplus electric currents.  相似文献   

4.
We have modeled the magnetosphere by superimposing a dipole field, a uniform field and a perturbation field due to a simple current system. This current system consists of a ring current in the neutral line of the dipole plus uniform fields, together with vertical currents representing field-aligned currents to the neutral line. The current circuit is closed by two additional ring currents above and below the equatorial plane representing distributed adiabatic perpendicular currents. This system produces many magnetospheric features including a magnetopause, bending of magnetic field lines in the anti-solar direction, a magnetotail, and cusps on the day-side of the Earth. Our aim is to demonstrate that it is not necessary to think of the magnetic field topology as being caused by the flowing plasma carrying field lines. The fundamental physical problem is to derive the current system from the self-consistent interaction of the solar-wind and magnetospheric plasmas and fields.  相似文献   

5.
The geometry of the open flux area in the polar region is computed by superposing a uniform interplanetary magnetic field (IMF) with various orientation angles to a model of the magnetosphere. It is confirmed that the IMF By component is as important as the Bz component in “opening” the magnetosphere. It is also shown that the computed area of open field lines is remarkably similar to the observed ones which were determined by using the entry of solar electrons. In particular, when the IMF vector is confined in the X-Z-plane and the Bz component has a large positive value, the open area becomes crescent-shaped, coinciding approximately with the cusp region.  相似文献   

6.
The power generated by the solar wind—magnetosphere dynamo is proportional to the amount of the open magnetic flux Φ. It is difficult to use this fact in determining observationally the dependence of Φ on the orientation of the interplanetary magnetic field vector. It is shown that, for a simple vacuum superposition of the earth's dipole field and a uniform magnetic field, Φ is very closely proportional to sin θ/2) for a wide range of the intensity of the uniform field, where θ denotes the polar angle of the interplanetary magnetic field vector in the Y-Z plane of solar-magnetospheric coordinates.  相似文献   

7.
We study the static stiff-fluid model for perfect fluid distributions in the presence of incident magnetic field. The magnetic field is surrounded by static stiff fluid of infinite electric conductivity and it is due to the electric current flowing along theZ-axis. The various physical and geometrical properties together with the state of model in absence of magnetic field are also discussed.  相似文献   

8.
A magnetohydrodynamic model is constructed for a cylindrical jet embedded in an external uniform magnetic field. It is shown that, as in the force-free case, the total electric current within the jet can be zero. The particle energetics and the magnetic-field structure are determined in a self-consistent way; all jet parameters depend markedly on the physical conditions in the external medium. In particular, we show that a region with subsonic flow can exist in the central jet regions. In real relativistic jets, most of the energy is transferred by the electromagnetic field only at a sufficiently large magnetization parameter σ>106. We also show that, in general, the well-known solution with a central core B Z =B 0/(1+?2/? c 2 ) cannot be realized in the presence of an external medium.  相似文献   

9.
A laboratory experiment is designed to study the interaction of the solar wind with the geomagnetic field. Time-exposure and time-resolved photographs are taken when plasma hits a model Earth, and direct measurements are made of the magnetic field change, plasma density and electric current distribution. The shape of the magnetic cavity formed on the upstream side of the model Earth is almost the same as that calculated for the geomagnetic cavity. The charged particles, which penetrate the magnetic cavity formed on the upstream side of the model Earth with east-west asymmetry from the neutral points on the cavity surface, appear to concentrate towards the equator on the rear side of the model, forming a westward electric current belt within the magnetosphere. When the dipole axis is not perpendicular to the plasma gun—magnetic dipole line, the invasion of plasma is more pronounced at the cusp of the cavity nearer to the gun. Charged particles appear to penetrate to a greater extent if a uniform external magnetic field is applied parallel to the magnetic dipole than if one is applied antiparallel.  相似文献   

10.
Capture cross section of magnetized particle (with nonzero magnetic moment) by braneworld black hole in uniform magnetic field is studied. The magnetic moment of particle was chosen as it was done by de Felice and Sorge (Class. Quantum Gravity 20:469, 2003) and for the simplicity particle with zero electric charge is chosen. It is shown that the spin of particle as well as the brane parameter are to sustain the stability of particles circularly orbiting around the black hole in braneworld i.e. spin of particles and brane parameter try to prevent the capture by black hole.  相似文献   

11.
On the basis of the experimental data on the ionospheric conductivities and field-aligned currents the electric fields and currents in the ionosphere generated by the field-aligned currents were computated for various magnetic activity conditions. The model of the ionospheric conductivities by Vanyan and Osipova (1975) was used taking into account the influence of the universal time seasons and magnetic activity. The field-aligned current patterns and their change with magnetic activity was set on the basis of the TRIAD data. It is shown that the calculated patterns of the ionospheric electric fields and currents are in agreement with the measured electric fields and the equivalent current systems of the magnetic disturbances in high latitudes. The conclusion is made that the magnetospheric field-aligned currents are the main sources of the presently known polar magnetic disturbances.  相似文献   

12.
S. Régnier 《Solar physics》2012,277(1):131-151
In the last decades, force-free-field modelling has been used extensively to describe the coronal magnetic field and to better understand the physics of solar eruptions at different scales. Especially the evolution of active regions has been studied by successive equilibria in which each computed magnetic configuration is subject to an evolving photospheric distribution of magnetic field and/or electric-current density. This technique of successive equilibria has been successful in describing the rate of change of the energetics for observed active regions. Nevertheless the change in magnetic configuration due to the increase/decrease of electric current for different force-free models (potential, linear and nonlinear force-free fields) has never been studied in detail before. Here we focus especially on the evolution of the free magnetic energy, the location of the excess of energy, and the distribution of electric currents in the corona. For this purpose, we use an idealised active region characterised by four main polarities and a satellite polarity, allowing us to specify a complex topology and sheared arcades to the coronal magnetic field but no twisted flux bundles. We investigate the changes in the geometry and connectivity of field lines, the magnetic energy and current-density content as well as the evolution of null points. Increasing the photospheric current density in the magnetic configuration does not dramatically change the energy-storage processes within the active region even if the magnetic topology is slightly modified. We conclude that for reasonable values of the photospheric current density (the force-free parameter α<0.25 Mm−1), the magnetic configurations studied do change but not dramatically: i) the original null point stays nearly at the same location, ii) the field-line geometry and connectivity are slightly modified, iii) even if the free magnetic energy is significantly increased, the energy storage happens at the same location. This extensive study of different force-free models for a simple magnetic configuration shows that some topological elements of an observed active region, such as null points, can be reproduced with confidence only by considering the potential-field approximation. This study is a preliminary work aiming at understanding the effects of electric currents generated by characteristic photospheric motions on the structure and evolution of the coronal magnetic field.  相似文献   

13.
The large-scale structure of a collisonless, two-component plasma with a typical Larmor radius of ions ? and scale-lengthL is discussed using Maxwell transport equations. Special attention is paid to the situations in which the usual one-fluid model of plasma based on the expansion of the transport equations in the powers of the ratio ?/L is not a satisfactory approximation. The one-fluid model fails if the magnetic-field-aligned component of the mass velocity or the magnetic-field-aligned component of the typical random velocity of particles is much larger than the other components of the mass and random velocities. The model also fails if the component of the typical random velocity of particles, which is perpendicular to the field lines, substantially exceeds the mass velocity of particles across the field lines. A quasi-static plasma is discussed as an example of plasmas on which the expansion in the powers of ?/L is not applicable. The relation between the electric current flowing in a quasi-static plasma (or in a hot plasma streaming along the field lines) and the topology of the magnetic lines of force is analysed. There are two distinguishable currents of different origin in such a plasma. Magnetic field generated by the currents acquires a geometry in which one current flows in the surfaces perpendicular to the binormals to the field lines while the other current flows along the binormals.  相似文献   

14.
Variations in the scalar magnetic field (ΔB) from the polar orbiting OGO 2, 4 and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the Sun and for times when the interplanetary magnetic field is away from the Sun. In both cases, at all altitudes, the total field variations form a region of positive ΔB between about 22 hr and 10 hr MLT and a region of negative ΔB between about 10 hr and 22 hr MLT. This morphology is basically the same as that found when all data, irrespective of inter-planetary magnetic sector, are averaged together (Langel, 1974a, b). Differences in ΔB occur, both between sectors and between seasons, which are similar in nature to variations in the surface ΔZ found by Langel (1973). The altitude variation of ΔB at sunlit local times, together with variations in the vertical component ΔZ at the Earth's surface, demonstrates that the ΔZ and ΔB which varies with sector has an ionospheric source. Langel (1974b) showed that the positive ΔB region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source (s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of ΔB.  相似文献   

15.
The role of the electric currents distributed over the volume of an active region on the Sun is considered from the standpoint of solar flare physics. We suggest including the electric currents in a topological model of the magnetic field in an active region. Typical values of the mutual inductance and the interaction energy of the coronal electric currents flowing along magnetic loops have been estimated for the M7/1N flare on April 27, 2006. We show that if these currents actually make a significant contribution to the flare energetics, then they must manifest themselves in the photosphericmagnetic fields. Depending on their orientation, the distributed currents can both help and hinder reconnection in the current layer at the separator during the flare. Asymmetric reconnection of the currents is accompanied by their interruption and an inductive change in energy. The reconnection of currents in flares differs significantly from the ordinary coalescence instability of magnetic islands in current layers. Highly accurate measurements of the magnetic fields in active regions are needed for a quantitative analysis of the role of distributed currents in solar flares.  相似文献   

16.
Propagation of a quasi-neutral narrow ion beam across a magnetised cold plasma is investigated in slab geometry. This problem is of interest in connection with artificial beam injection experiments and with naturally appearing plasma injections into magnetic fields as astrophysical jets. Several different cases are discussed briefly where the beam is assumed either slow or fast. For fast beams it is shown that they propagate due to generation of a polarisation electric field even in the case of presence of a background plasma. Slow beams can depolarise by currents flowing into the beam along the field lines and providing the required electrons for charge neutralisation. Some implications of the model are discussed in the context of recent active beam injection experiments into space plasma.  相似文献   

17.
Instability of a stratified layer of a partially-ionized plasma has been investigated in the simultaneous presence of the effects of Hall currents, magnetic resistivity, finite Larmor radius (FLR), and viscosity. The ambient magnetic field is assumed to be uniform and acting along the vertical direction. The solution is shown to be characterized by a variational principle, based on it the solution has been obtained for a plasma in which the density is stratified exponentially along the vertical. It is found that the viscosity, friction with neutrals, and FLR have all stabilizing influence on the growth rate of the unstable mode of disturbance. Magnetic resistivity and Hall currents are, however, found to have a destabilizing influence.  相似文献   

18.
Two kinetic models for the auroral topside ionosphere are compared. The collisionless plasma distributed along an auroral magnetic field line behaves like a non-Ohmic conducting medium with highly non-linear characteristic curves relating the parallel current density to the potential difference between the cold ionosphere and the hot plasmasheet region. The (zero-electric current) potential difference, required to balance the current carried by the precipitating plasmasheet particles and the current transported by the outflowing ionospheric particles, depends on the ratio nps.e/nth.e and Tps.e/Tth.e of the plasmasheet and ionospheric electron densities and temperatures. When in the E-region the magnetic field lines are interconnected by a high conductivity plasma the resulting field-aligned currents driven by the magnetospheric potential distribution are limited by the integrated Pedersen conductivity of the ionospheric layers. These currents are not related to the parallel electric field intensity as they would be in Ohmic materials. The parallel electric field intensity is necessarily determined by the local quasi-neutrality of the plasma.  相似文献   

19.
In view of observations which show that a substorm often begins in a small local time sector, a model is assumed in which the neutral sheet current is diverted around a small region we call a bubble. The simplest assumption is that of a linear variation of current with distance from the centre of the bubble in the x-direction in a SM coordinate system, with the diverted current being channelled within narrow paths of width δy on the dawn and dusk sides of the bubble. This assumption leads to vector potential integrals that can be evaluated analytically. The addition of this current loop into the magnetotail results in a magnetic field structure where new neutral lines of X- and 0-type can be observed; these are connected to each other as a continuous neutral ring in the xy equatorial plane. The magnetic and electric field components around the neutral regions are calculated, and the time dependent evolution of the neutral ring is studied. Comparison with some published satellite observations shows good agreement. Taking typical values for the various quantities on the basis of actual observations within the magnetotail, we show that the induced electric field is at least comparable to the average cross-tail electrostatic field, and it may well be one or two orders of magnitude greater. The response of the plasma to the induction field is discussed qualitatively. It is concluded that field aligned currents may be produced due to inertial forces of the expanding disturbance. Interpretation of the ground based precipitation patterns of energized particles during auroral breakup is given.  相似文献   

20.
The correlation between the polar cap geomagnetic variations (H-traces) and the changes of the azimuthal (YSE) and vertical (ZSE) components of the interplanetary magnetic field (IMF) during undisturbed periods is examined. It is shown that peak-to-peak correlation between YSE and geomagnetic horizontal component variations may be generally observed in the daytime cusp region, independently of the magnitude and polarity of the ZSE. The existence of the DP3 disturbances associated with the northward component ZSE > 0 is confirmed. It is shown that the disturbances due to the vertical component of the IMF dominate in the region near the pole. In so far as the southward component of the IMF generates both polar cap disturbances and geomagnetic substorms, the disturbances in the region near the pole, associated with ZSE < 0, may be regarded as a precursor of a substorm. On this basis a new index of the polar cap magnetic activity PCL, characterizing the changeability of the magnetic field is proposed. It is shown that the increase of the PCL index is followed in 1–2 hr by a substorm in 70% of events considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号