首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard E – model generates aplanetary boundary layerthat appears to be much too deep. The cause of theproblem is traced to the equation for the dissipationrate () of turbulent kinetic energy (E), specifically theparameterization of dissipation production anddestruction. In the context of atmosphericboundary-layer modelling, we argue that a part of thedissipation production should be modelled as the inputto the spectral cascade from the energy-containingpart of the spectrum, with a characteristic length , while the equilibrium imbalancebetween local production and destruction ofdissipation is modelled as proportional toE2/E, as in the standard model. Wepropose an E – – turbulence closurescheme, in which both the mixing length, m, and are prescribed. The importance ofthe equation is diminished, though itstill determines the dissipation rate in the Eequation.  相似文献   

2.
An alternative analysis of flux-gradient relationships at the 1976 ITCE   总被引:7,自引:1,他引:7  
An extensive micrometeorological data set from the 1976 International Turbulence Comparison Experiment (ITCE) is analysed to determine flux-gradient relationships in an unstable atmosphere for momentum, sensible heat and water vapour transfers. The data are first analysed for internal consistency, resulting in the rejection of some data. Following a least-square fit to the remaining data in the form /k = (1 – z/L)-/k, rounded-off values of k, , and are selected for each form of transfer consistent with the statistical accuracy of the measurements. The equations finally adopted are M = (1 – 28z/L)-1/4 and H, W = (1 – 14z/L)-1/2 with k M = kH = kW = 0.40.These expressions fit the averaged observations to within a few per cent in the stability range of the experiment (-4 < z/L < -0.004).  相似文献   

3.
Weekly bulk aerosol samples collected at Funafuti, Tuvalu (8°30S, 179°12E), American Samoa (14°15S, 170°35W), and Rarotonga (21°15S, 159°45W), from 1983 through most of 1987 have been analyzed for nitrate and other constituents. The mean nitrate concentration is about 0.11 g m–3 at each of these stations: 0.107±0.011 g m–3 at Funafuti; 0.116±0.008 at American Samoa; and 0.117±0.010 at Rarotonga. Previous measurements of mineral aerosol and trace metal concentrations at American Samoa are among the lowest ever recorded for the near-surface troposphere and indicate that this region is minimally affected by transport of soil material and pollutants from the continents. Consequently, the nitrate concentration of 0.11 g m–3 can be regarded as the natural level for the remote marine boundary layer of the tropical South Pacific Ocean. In contrast, over the tropical North Pacific which is significantly impacted by the transport of material from Asia and North America, the mean nitrate concentrations are about three times higher, 0.29 and 0.36 g m–3 at Midway and Oahu, respectively. The major sources of the nitrate over the tropical South Pacific are still very uncertain. A very significant correlation between the nitrate concentrations at American Samoa and the concentrations of 210Pb suggests that transport from continental sources might be important. This continental source could be lightning, which occurs most frequently over the tropical continents. A near-zero correlation with 7Be indicates that the stratosphere and upper troposphere are probably not the major sources. A significant biogenic source would be consistent with the higher mean nitrate concentrations, 0.16 to 0.17 g m–3, found over the equatorial Pacific at Fanning Island (3°55N, 159°20W) and Nauru (0°32S, 166°57E). The lack of correlation between nitrate and nss sulfate at American Samoa does not necessarily preclude an important role for marine biogenic sources.  相似文献   

4.
Stable Isotope Ratios: Hurricane Olivia   总被引:1,自引:0,他引:1  
The oxygen and hydrogen isotopic compositions of rains from HurricaneOlivia (1994) in the eastern Pacific were measured. The rains werecollected on 24 and 25 September during airplane flights conducted at anelevation of 3 km. Hurricane Olivia peaked in intensity to a category-4storm between the two dates. Isotope ratios of rains from HurricaneOlivia were markedly lower ( 18O = –13.9to –28.8) than that of rain collected from a thunderstormat an elevation of 2.3 km outside the influence of Olivia (18O = –3.8). A distinct decrease in isotoperatios from the first day to the next ( 18O =–18.4 to –21.9) in Hurricane Olivia wasattributed to decreased updraft velocities and outflow aloft. Thisshifted the isotopic water mass balance so that fewer hydrometeors werelifted and more ice descended to flight level. A decrease in the averagedeuterium excess from the first day to the next (d = 15.5 to 7.1)was attributed to an increase in the relative humidity of the watervapor `source' area. We hypothesize that the `source' region for therain was in the boundary layer near the storm center and that becausethe hurricane was at peak intensity prior to the second day the relative humidity was higher.  相似文献   

5.
Drag and drag partition on rough surfaces   总被引:13,自引:0,他引:13  
An analytic treatment of drag and drag partition on rough surfaces is given. The aims are to provide simple predictive expressions for practical applications, and to rationalize existing laboratory and atmospheric data into a single framework. Using dimensional analysis and two physical hypotheses, theoretical predictions are developed for total stress (described by the square root of the canopy drag coefficient), stress partition (described by the ratio S/ of the stress s on the underlying ground surface to total stress ), zero-plane displacement and roughness length. The stress partition prediction is the simple equation S/= 1/(1+), where = CRCS the ratio of element and surface drag coefficients. This prediction agrees very well with data and is free of adjustable constants. Other predictions also agree well with a range of laboratory and atmospheric data.  相似文献   

6.
Cloud water and interstitial aerosol samples collected at Mt. Sonnblick (SBO) were analyzed for sulfate and aerosol carbon to calculate in-cloud scavenging efficiencies. Scavenging efficiencies for sulfate (SO) ranged from 0.52 to 0.99 with an average of 0.80. Aerosol carbon was scavenged less efficiently with an average value (AC) of 0.45 and minimum and maximum values of 0.14 and 0.81, respectively. Both SO and AC showed a marked, but slightly different, dependence on the liquid water content (LWC) of the cloud. At low LWC, SO increased with rising LWC until it reached a relatively constant value of 0.83 above an LWC of 0.3 g/m3. In the case of aerosol carbon, we obtained a more gradual increase of AC up to an LWC of 0.5 g/m3. At higher LWCs, _ remained relatively constant at 0.60. As the differences between SO and A varied across the LWC range observed at SBO, we assume that part of the aerosol carbon was incorporated into the cloud droplets independently from sulfate. This hypothesis is supported by size classified aerosol measurements. The differences in the size distributions of sulfate and total carbon point to a partially external mixture. Thus, the different chemical nature and the differences in the size and mixing state of the aerosol particles are the most likely candidates for the differences in the scavenging behavior.  相似文献   

7.
Analytical solutions for the Ekman layer   总被引:1,自引:0,他引:1  
The PBL equation that governs the transition from the constant-stress surface layer to the geostrophic wind in a neutrally stratified atmosphere for which the eddy viscosityK(z) is assumed to vary smoothly from the surface-layer value U *z (0.4,U *=friction velocity,z=elevation) to the geostrophic asymptoteK GU *d forzd is solved through an expansion in fd/U *1 (f=Coriolis parameter). The resulting solution is separated into Ekman's constant-K solution an inner component that reduces to the classical logarithmic form forzd and isO() relative to the Ekman component forzd. The approximationKU *d is supported by the solution of Nee and Kovasznay's phenomenological transport equation forK(z), which yieldsKU *d exp(–z/d), where is an empirical constant for which observation implies, 1. The parametersA andB in Kazanskii and Monin's similarity relation forG/U * (G=geostrophic velocity) are determined as functions of . The predicted values ofG/U * and the turning angle are in agreement with the observed values for the Leipzig wind profile. The predicted value ofB based on the assumption of asymptotically constantK is 4.5, while that based on the Nee-Kovasznay model is 5.1; these compare with the observed value of 4.7 for the Leipzig profile. A thermal wind correction, an asymptotic solution for arbitraryK(z) and 1, and an exact (unrestricted ) solution forK(z)=U *d[1–exp(–z/d)] are developed in appendices.  相似文献   

8.
When applied to a sea surface, shortcomings are noted for the ordinary classification of drag conditions at rigid underlying surfaces according to the Reynolds roughness number Re s . It is shown that in the case of mobile underlying surfaces, it would be more natural to use the dynamical classification of drag conditions according to the order of magnitude of the ratio ( = /) of the momentum flux toward the waves ( w) to the viscous momentum flux through the surface ( w). The relevant estimates of for the main stages of development of the wind waves indicate that the observed values of the drag coefficient of the sea surface correspond to the case of underdeveloped roughness.  相似文献   

9.
Frequency spectra of atmospheric turbulenceS (f) in the inertial subrange are considered in the free convection regime over the sea surface in a case of motionless instrument measurements (Eulerian frequency spectra). The frequency spectra formulaef * S (f)/ 2 =c (f */f)5/3 for wind velocity (=1–3), temperature (=t) and humidity (=e) fluctuations are derived on the basis of similarity theory and the –5/3 law. These relations also can be derived from a consideration of convective large-scale advection of small eddies. The frequency scalef * = (N 1 2/)1/2 (H/z 2)1/3 is the lower bound of the inertial subrange and it is of order 10–2 Hz.The spectra formulae are compared with direct measurements of atmospheric turbulence from the fixed research tower in the coastal zone of the Black Sea in calm weather. It is shown that these formulae are realized at least over two to three decades of the frequency range (approximately from 10–2 to 10 Hz) and values of the numerical coefficients are found. The derived formulae can be used for calculations of sensible and latent heat fluxes by measuring the high-frequency range of spectra at a fixed point at low wind speeds when the conventional inertial dissipation method is not applicable.  相似文献   

10.
A Comparative Analysis of Transpiration and Bare Soil Evaporation   总被引:4,自引:0,他引:4  
Transpiration Ev and bare soil evaporation Eb processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content . For a homogeneous areal distribution of we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of are simulated by Monte-Carlo runs assuming normal distributions of .The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theEv()-Eb() differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation Av() and bare soil Ab() surfaces differ much less than the Ev() and Eb() curves. The results suggest that Ev is much more non-linearly related to environmental conditions than Eb. Both Ev and Eb depend on the distribution of , the wetness regime and the parameterization used. With the parameterizations, Eb showed greater variations than Ev. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.  相似文献   

11.
Summary The integral aerosol optical depths (k ) at the hour of 08:20 Local Standard Time (LST), are compared with those calculated previously at 11:20 and 14:20 LST, for clear days during summer in Athens over the period 1962–1988. The mean values at 08:20 LST were consistently lower than the values at 11:20 and 14:20 LST. The influence of the vertical wind profile on the values ofk was also investigated. A comparison was made of the wind profiles at 02:00 and 14:00 LST, for days in which the 11:20 and 14:20 LST values ofk were 0.200 andk 0.350, respectively. The corresponding bulk wind shear s was also found for the period 1980–1988. The most significant results occurred with the first category of days. The resultant wind velocities from the surface to the 900 hPa level, in each hour were higher by 2–4 m·s–1 with respect to the corresponding values for the second category. At 02:00 LST the bulk wind shear showed a considerable difference (1.8) between the two categories of days in the surface to 700 hPa layer at 02:00 LST. Finally, the associated weather conditions that appear to initiate a period of low values ofk (k 0.200) at 11:20 and 14:20 LST were examined for the period 1980–1988. Fifteen such cases were identified and it was found that they all occurred after the passage of weak cold fronts.With 6 Figures  相似文献   

12.
The influence of an internal boundary layer and a roughness sublayer on flux–profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensible heat flux and momentum (h and m) and analysed as a function of atmospheric stability and fetch. For heat, the influences of the roughness sublayer and the internal boundary layer were in agreement with previous studies. For momentum, the strong vertical gradient of the flow just above the canopy top for some wind sectors led to an increase in m, a feature that has not previously been observed. For a fetch of 500 m over the beech forest during neutral atmospheric conditions, there is no height range at the site where profiles can be expected to be logarithmic with respect to the local surface. The different influence of the roughness sublayer on h and m is reflected in the aerodynamic resistance for the site. The aerodynamic resistance for sensible heat is considerably smaller than the corresponding value for momentum.  相似文献   

13.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

14.
STAR (System for Transfer of Atmospheric Radiation) was developed to calculate accurately and efficiently the irradiance, the actinic flux, and the radiance in the troposphere. Additionally a very efficient calculation scheme to computer photolysis frequencies for 21 different gases was evolved. STAR includes representative data bases for atmospheric constituents, especially aerosol particles. With this model package a sensitivity study of the influence of different parameter on photolysis frequencies in particular of O3 to Singlet D oxygen atoms, of NO2, and of HCHO was performed. The results show the quantitative effects of the influence of the solar zenith angle, the ozone concentration and vertical profile, the aerosol particles, the surface albedo, the temperature, the pressure, the concentration of NO2, and different types of clouds on the photolysis frequencies.Notation I A(, ) actinic flux - I H(, ) irradiance - L(, , , ) radiance - wavelength - azimuth angle - cosine of zenith angle - s cosine of solar zenith angle - optical depth - s scattering coefficient - c extinction coefficient - o single scattering albedo - p mix mixed phase function - g mix mixed asymmetry factor - J gas photolysis frequency  相似文献   

15.
Summary During an expedition to the high Andes of Southern Peru in June–July 1977, measurements of direct solar radiation in four spectral bands (0.270–0.530–0.630–0.695–2.900 ) were conducted at six sites in elevations ranging from sea level to 5645 m. These measurements were evaluated in Langley plots to determine total optical depths () and irradiances at the top of the atmosphere. In addition, water vapor optical depths (wv) were calculated from the mean radiosounding over Lima during the expedition, and Rayleigh (ray) and ozone (oz) optical depths were obtained from published tabulations. Subtracting ray, oz, and wv from yielded estimates of aerosol optical depth aer. The components ray and oz decrease from the shorter towards the longer wavelength bands and from the lower towards the higher elevation sites; aer also decreases towards the higher elevations. Particularly pronounced is the decrease of aer and from the lowlands of the Pacific coast to the highlands of the interior, reflecting the effect of a persistent lower-tropospheric inversion and the contrast from the marine boundary layer to the clear atmosphere of the high Andes.With 4 Figures  相似文献   

16.
From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range –2 z/L + 2. The calculations show good agreement with observations with the exception of a range –1 z/L 0 in which the function m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.Notation a,b,c contants (see Equations (–4)) - Ci constants i=u, v, w, (see Equation (5) - kme,kmT peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively - kmi peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i= - ksb, kc characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively - L Monin-Obukhov length - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\] difference of mean temperature and mean potential temperature - T* Monin-Obukhov temperature scale - velocity of mean flow in positive x-direction - u* friction velocity - u, v, w components of velocity fluctuations - z height above ground - von Kármanán constant - temperature fluctuation - m nondimensional mean shear - H nondimensional mean temperature gradient - nondimensional rate of lolecular dissipation of turbulent kinetic energy - D nondimensional divergence of vertical transports of turbulent linetic energy  相似文献   

17.
The study focuses on a way to parameterize the effect of subgrid scale convective motions on surface fluxes in large scale and regional models for the case of light surface winds. As previously proposed, these subgrid effects are assumed to scale with the convection intensity through the relationship: where is the mean velocity of the wind, U0 the velocity of the mean wind, w* the free convection velocity, and an empirical coefficient to be determined. Both observations and numerical simulation are presently used to determine the free convection coefficient .Large eddy simulation of a fair weather convective boundary layer case observed during TOGA-COARE is performed. Comparisons between observations and the simulation of surface properties and vertical profiles in the planetary boundary layer are presented. The simulated vertical turbulent fluxes of heat, moisture and buoyancy range well within estimates from aircraft measurements.The most important result is that the true free convection coefficient , directly estimated from simulation, leads to a value of 0.65, smaller than the ones estimated from temporal and spatial variances. Using observations and simulation, estimates of from temporal and spatial variances are obtained with similar values 0.8. From both theoretical derivations and numerical computations, it is shown that estimates of the true from variances are possible but only after applying a correction factor equal to 0.8. If this correction is not used, is overestimated by about 25%. The time and space sampling problem is also addressed in using numerical simulations.  相似文献   

18.
A previously published technique for using tethered spherical balloons as anemometers for measuring light low-level winds has been further developed. Earlier data on the relationship between the aerodynamic drag coefficient and the Reynolds number of spherical rubber balloons were combined with a large number of new data and re-analysed; and the errors in the relationship were estimated. The results allowed a more accurate calculation of wind speed from the deflection of a tethered balloon from the vertical. When combined with a new technique for calculating the effects of the tether, this enabled light to moderate low-level winds at fixed heights up to 600 m or more to be measured with simple, cheap, and readily mobile equipment; and a slight modification of the technique allowed measurement of winds in and above fog. Wind speeds measured by the ballon technique showed reasonably good agreement with measurements by an anemometer carried beneath the balloon.Glossary of Symbols a, b, c Coefficients in the relationship between lnC d and lnR - A Quantity under square root in solution for lnV whena0 - C d Wind drag coefficient for balloon - C dc Value ofC d given by calibration curve of Table I - D Dynamic wind pressure force on balloon - F Buoyant free lift of balloon with load - Re Reynold's number of balloon (sphere) - R = Re/105 - r Radius of sphere - T Tension in tether - V Wind speed - 83() =(lnC dc -lnC d ) when 83° , or 0 for other - Error in lnC d - Elevation of tether where attached to balloon - Elevation of balloon from ground tether point - Molecular viscosity of air - Ratio of circumference to diameter of circle - Density of air  相似文献   

19.
Past work on analyzing ground-source diffusion data in terms of surface-layer similarity theory is reviewed; these analyses assume that z /L orh/L is a function of u * x/L (where h = Q/ dy). It is argued that an alternative scaling, h */L versus x/L, is nearly as universal in that it is very weakly influenced by surface roughness, except for a modest influence in the free convective case (h * = Q/u * dy); the advantage of this scaling is that it eliminates the need to reassess as vertical diffusion progresses. The Prairie Grass data set is adjusted for the difference in source and sampling heights, and is plotted with this scaling. Simple analytic equations are suggested that fit the resultant data plots for stable and unstable conditions, and suggestions are made towards practical application of these results.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

20.
The paper considers a puff diffusion in its inertial stage when particle separation obeys the laws of the inertial subrange and depends only on eddy energy dissipation rate . The can be determined in the surface layer by the turbulent kinetic energy equation. Similarity equations connect with diffusion measure .A simple analytical model has been deduced to estimate pollutants diffusion during calms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号