首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
副族元素的成矿作用与矿田类型   总被引:2,自引:1,他引:1       下载免费PDF全文
姜莲婷  陈国能 《地学前缘》2011,18(1):95-101
岩石熔融 岩浆固结过程不仅导致花岗岩的形成,同时造成了副族微量元素的富集,形成不同类型的矿床和矿田。根据成矿元素与氧、硫元素的关系,文中将上述元素形成的矿田分为亲氧元素型、亲硫元素型和氧硫复合型。前者产于花岗岩体内部,成矿与成岩基本同时,矿田的形成主要受控于岩浆分异作用和岩体剥蚀深度;次者产于岩体外部,成岩与成矿具有一定的年龄差,矿田控制因素主要为深部重熔界面隆起区的埋深和相应控矿构造的产状;最后一类矿田的特征是花岗岩体内部产亲氧元素矿床(主要为铀钍),矿床与容矿岩体通常有巨大年龄差,在岩体外围则分布亲硫元素矿床,本类矿田的控制因素主要为区域地壳熔融(重熔)次数及晚期重熔界面隆起区的埋深。  相似文献   

2.
斑岩型铜、金、钼矿床成岩成矿特征差异的原因和意义   总被引:1,自引:0,他引:1  
文中简要总结了斑岩型金矿、铜矿和钼矿在产出的构造环境,岩石地球化学特征和出溶流体的温度、压力、盐度、蚀变等方面的异同点,重点从元素的地球化学性质、岩浆的源区和过程(熔体和流体演化)3个方面解释了上述差异。Au、Cu和Mo在地球化学性质尤其是亲硫性上的差异决定了元素在不同的大地构造环境下的岩浆作用过程中的分布、迁移和富集特征,最终控制了矿床的分布。岩浆的源区及其温压条件、熔体上升过程中矿物的分离结晶和中上地壳岩浆房内的演化程度控制了成矿岩浆的地球化学特征,进而影响其就位时的压力和温度,从而导致出溶流体在p-T-X上的变化。结合岩浆岩中大离子亲石元素和SiO2的含量,可以评估斑岩型矿床的类型:高的Rb含量是斑岩型钼矿的特征,高的Ba含量是斑岩型钼+铜矿的特征,高的Sr含量是斑岩型铜+金矿的特征。相对于俯冲环境,后俯冲环境下的成矿岩体具有更高的大离子亲石元素含量。矿区中酸性岩石的结构(斑状、似斑状、不等粒和等粒结构)可以用来初步指示成矿的潜力。  相似文献   

3.
传统地质学理论认为花岗岩是由异地深熔的花岗岩浆沿构造侵入至地壳浅部冷凝结晶形成的,"原地重熔-壳内对流"理论认为熔融的花岗岩浆并没有离开源区,而是原地重熔,熔融岩浆层内的热能对流形成大规模层状或似层状花岗岩浆,岩浆层冷凝结晶形成花岗岩,花岗岩体是岩浆层界面(MI)凸起形成的。燕山晚期花岗闪长斑岩是紫金山矿集区成矿母岩,在温度差和压力差作用下,成矿元素和挥发分在MI凸起界面上部富集形成含矿流体,在沿构造裂隙向上向外逃逸过程中与围岩产生水岩反应,形成从高温到低温热液蚀变分带,而不同成矿元素则在不同温度、压力(深度)和Eh、pH区间沉淀成矿,形成罗卜岭斑岩型铜钼矿、紫金山高硫化中低温热液型铜金矿和悦洋低硫化低温热液型银多金属矿,它们是同一斑岩-浅成热液成矿体系的产物。  相似文献   

4.
中国西部探明了一系列与新元古代以来幔源岩浆有关的镍铜铂族元素(platinum group elements, PGE)岩浆矿床,华北克拉通新元古代金川镍铜铂族硫化物矿床、峨眉山二叠纪大火成岩省金宝山铂族元素矿床等记录了不同构造环境幔源岩浆PGE超常富集成矿过程。亲铁性的铂族元素高度富集于地核,深部地幔起源、高程度部分熔融形成的镁铁质岩浆中PGE含量较高,地幔岩浆系统不同条件下铂族元素以纳米态元素簇、合金、硫化物熔体或超临界流体运移-聚集成矿,在阶段性岩浆房多阶段、多途径富集,成矿作用类型丰富。华北-华南克拉通岩石圈地幔PGE含量均略高于原始地幔值;华北克拉通岩石圈地幔PGE含量从古生代到中新生代略有降低,表明存在PGE抽取岩浆事件。中国西部新元古代以来的幔源岩浆源区PGE不亏损、岩浆活动时间长、岩浆-硫化物相互作用PGE多阶段富集及地幔柱岩浆动力学背景是PGE超常富集成矿的有利地质条件,其控制因素及动力学背景的认识对查明PGE成矿潜力和拓展资源储量具有重要意义。  相似文献   

5.
对黄山铌钽矿区含矿岩体(黑云母二长花岗岩、花岗伟晶岩、细粒黑云母花岗岩)的主量元素、微量元素进行地球化学分析,并与成矿带典型A型花岗岩对比,发现它们属于高分异花岗岩,具富硅高碱、贫钙低镁的特征,A/CNK值均>1,属于准铝质—过铝质岩石。岩石富集高场强元素Nb、Th、Ta、Zr、U、Hf及大离子亲石元素Rb,亏损大离子亲石元素Ba、Sr、P及高场强元素Ti。球粒陨石标准化稀土元素配分形式属于“海鸥型”,具强烈的Eu负异常。10 000×Ga/Al值均>2.60、Zr+Nb+Ce+Y总量远高于350×10-6,岩石成因类型为板内花岗岩A1亚类,推断岩体是在拉张构造背景下由于地幔物质上涌导致底侵作用,促使下地壳部分熔融形成了初始岩浆,在上侵过程中有地壳物质的混染。岩浆在侵位过程中发生的结晶分异作用,使铌钽等成矿元素与岩浆熔体分离,高分异演化熔体、富挥发份流体(主要是F、Cl)共同作用是铌钽富集的主要因素。  相似文献   

6.
大洋山斑岩型钼矿位于大兴安岭东北部呼中区,钼矿体主要产于石英二长斑岩体和上盘围岩中,产状受石英二长斑岩体控制。通过锆石LA-ICP-MS U-Pb定年,获得石英二长斑岩年龄为(119.83±0.87) Ma,可代表成矿年龄。岩石地球化学数据显示岩体偏铝、贫钛、富钾,具钾玄岩特征,为造山带岩石,岩浆熔体未与地幔相互作用;相对富集大离子亲石元素Rb和K,相对亏损高场强元素Nb、Ta、P、Ti和HREE,亲地幔元素亏损、轻稀土富集以及Eu中等亏损等特征显示岩浆源自陆壳。结合区域地质资料认为大洋山斑岩型钼矿形成于早白垩世晚期,成矿物质来源为地壳的重熔,与蒙古—鄂霍茨克洋的俯冲闭合相关,成矿环境为伸展构造背景。  相似文献   

7.
云南富碱斑岩由地壳深部的源岩分离熔融形成,该源岩则由早期侵入陆壳的幔源超基性岩与陆壳组分混合而成。斑岩成矿作用的成矿物质主要来源于岩浆,铅同位素资料表明它们有深部流体相、早期陆壳和幔源岩浆三种来源,但归根结底可能本区存在异常上地幔。地质地球化学综合分析认为,铜金等元素主要来源于幔源组分,铅锌等元素来源于陆壳组分,源岩重熔和岩浆演化使成矿元素得到进一步的富集。在不同的构造单元中,源岩的壳幔组分比、重熔程度等存在差异,因而富碱斑岩特征及成矿作用有别,出现两个成矿亚系列。  相似文献   

8.
红旗岭—茶尖岭矿带铜镍硫化物矿床属于岩浆侵入体成矿,成矿物质铜、镍及硫均源于地幔。矿带铜镍硫化物矿床的成矿与陆壳碰撞后软流圈上涌导致的交代岩石圈地幔部分熔融有关,成矿以深部熔离—贯入方式为主。铜镍硫化物成矿及成大矿的关键因素:(1)辉发河超岩石圈断裂的快速导入;(2)浅部脆韧性裂隙的发育;(3)地幔源区岩浆的持续、充足的补给。对于铜镍硫化物的成矿:向成熟陆壳转化的初始成熟陆壳是必要的;过渡型陆壳及成熟陆壳均不利于铜镍硫化物的成矿。  相似文献   

9.
备战、敦德、智博、查岗诺尔铁矿分布于阿吾拉勒火山岩型铁矿带东段的大哈拉军山组火山岩中,各个矿区基性、中性和酸性火山岩兼而有之,但所占比例不尽相同。矿区的火山岩以钾玄岩系列、高钾钙碱性系列、钙碱性系列岩石为主,也有少量拉斑系列岩石出露。岩石相对富集轻稀土元素,相对富集大离子亲石元素而亏损Nb、Ta和Ti等高场强元素。显示出岛弧或活动陆缘环境火山岩的固有特征。研究认为该地区铁矿床为矿浆-火山热液复合成因型铁矿床,其形成受岩浆-热液系统活动的制约,具体成矿作用包括氧化物熔离成矿、隐爆-贯入成矿、分离结晶+岩浆流动成矿和热液交代四种类型。矿床的控矿因素与成矿条件包括:(1)活动大陆边缘型火山岩组合与伸展构造环境;(2)基性和中性火山熔浆多次喷溢和堆积部位;(3)含矿母岩浆的强烈分异演化导致氧化物熔离,而分离结晶和岩浆流动则促使富集矿体形成;(4)岩浆热液对流循环并萃取围岩铁质,是形成热液期矿石的基本机制;(5)火山机构及其伴生裂隙是含矿岩浆活动的有利空间并为成矿物质的聚集提供物理化学条件,是铁矿体主要控矿因素和赋矿部位。铁矿床与火山作用关系极为密切,火山熔浆与火山热液反复多次活动导致了成矿作用的多期多阶段性。  相似文献   

10.
根据金矿床中碲、硒赋存特点与富集程度,可将Au-(Ag)-Te-Se成矿系统的矿床成因类型划分为:(1) 浅成低温热液型金-银矿床;(2) 造山型金矿床;(3) 卡林-类卡林型金矿床;(4) 碱性-偏碱性侵入岩型金矿床;(5)斑岩型(铜)金矿床;(6) 夕卡岩型(铜)金矿床;(7) VMS型金多金属矿床。碲、硒都是亲地幔的元素,侵入岩与火山岩是Au-(Ag)-Te-Se成矿系统中碲、硒的重要来源,黑色岩系也是硒的重要来源。温度、pH、氧逸度等是控制Te、Se的迁移与富集的重要因素。Au-(Ag)-Te-Se成矿系统的成矿机制与岩浆脱气、流体-熔体分离、水-岩反应、流体沸腾与混合、有机作用密切相关。其中岩浆脱气、流体-熔体分离、流体沸腾与流体混合是碲化物型金矿床的重要成矿机制,而水-岩反应、流体混合、有机作用是硒化物型金矿床的重要成矿机制。在成矿过程中,先期形成一些亚稳定或不稳定的过渡态矿物易发生固溶体分离作用,或是不饱和流体与已形成的矿物发生溶解-再沉淀作用,导致矿石具有丰富的物质组成和结构特点。  相似文献   

11.
岩石成因与岩石圈演化思考   总被引:4,自引:0,他引:4       下载免费PDF全文
岩石圈内能变化导致岩石的形成和消亡。组成岩石圈的三种不同类型岩石的形成和消亡过程在岩石圈表面引起不同的大地构造效应。大洋岩石圈和大陆岩石圈的演化效应存在互补关系:前者内能升高导致岩石形成,反之岩石消亡;后者内能升高导致岩石消亡,反之岩石形成;前者造成平、剖面上均自洋中脊向外变老的岩石序列,后者造成平面上自陆核向外变新,剖面上自重熔界面向上和向下变新的岩石序列。  相似文献   

12.
Five domains (microplates) have been recognized by seismic anisotropy in the mantle lithosphere of the Bohemian Massif. The mantle domains correspond to major crustal units and each of the domains bears a consistent fossil olivine fabric formed before their Variscan assembly. The present-day mantle fabric indicates that this process consisted of at least three oceanic subductions, each followed by an underthrusting of the continental lithosphere. The seismic anisotropy does not detect remnants of the oceanic subductions, but it can trace boundaries of the preserved continental domains subsequently underthrust along the paths of previous oceanic subductions. The most robust continent–continent collision was followed by westward underthrusting of the Brunovistulian mantle lithosphere, still detectable by seismic anisotropy more than 100 km beneath the Moldanubian mantle lithosphere. Major occurrences of the high-pressure/ultra high-pressure (HP–UHP) rocks follow the ENE and NNE oriented sutures and boundaries of the mantle–lithosphere domains mapped from three-dimensional modeling of body-wave anisotropy. The HP–UHP rocks are products of oceanic subductions and the following underthrusting of the continental crust and mantle lithosphere exhumed along the mantle boundaries. The close relation of the mantle sutures and occurrences of the HP–UHP rocks near the paleosubductions testifies for models interpreting the granulite–garnet peridotite association by oceanic/continental subduction/underthrusting followed by the exhumation of deep-seated rocks. Our findings support the bivergent subduction model of tectonic development of the central part of the Bohemian Massif. The inferences from seismic anisotropy image the Bohemian Massif as a mosaic of microplates with a rigid mantle lithosphere preserving a fossil olivine fabric. The collisional mantle boundaries, blurred by tectonometamorphic processes in easily deformed overlying crust, served as major exhumation channels of the HP–UHP rocks.  相似文献   

13.
Fluids, tectonics and crustal deformation   总被引:1,自引:0,他引:1  
In the plate tectonic process, lithosphere creation at ocean ridges and its cooling leads to volatile fixation in the oceanic crust. The outer 10 km or so of all crust contains abundant water in pores and fractures and variable amounts of volatiles in minerals. When surface rocks are buried by tectonic processes, fluids must be released and modify the mechanical properties. In the subduction process hydrated oceanic crust may be decoupled from the remaining oceanic lithosphere. At depth rising aqueous fluids or melts lead to a complex series of mass-energy transfer processes which may decouple continental crust near the Moho. Continental crust if subducted, may also be decoupled from its lithosphere by degassing. Fluid release processes which create gas-solid mixtures beneath impermeable cover create low-strength systems subject to facile deformation, hydraulic fracture processes and diapiric phenomena.  相似文献   

14.
Subduction zones of continental, transitional, and oceanic settings, relative to the nature of the overriding plate, are compared in terms of trace element compositions of mafic to intermediate arc rocks, in order to evaluate the relationship between subduction parameters and the presence of subduction fluids. The continental Chilean Southern Volcanic Zone (SVZ) and the transitional to oceanic Central American Volcanic Arc (CAVA) show increasing degrees of melting with increasing involvement of slab fluids, as is typical for hydrous flux melting beneath arc volcanoes. At the SVZ, the central segment with the thinnest continental crust/lithosphere erupted the highest-degree melts from the most depleted sources, similar to the oceanic-like Nicaraguan segment of the CAVA. The northern part of the SVZ, located on the thickest continental crust/lithosphere, exhibits features more similar to Costa Rica situated on the Caribbean Large Igneous Province, with lower degrees of melting from more enriched source materials. The composition of the slab fluids is characteristic for each arc system, with a particularly pronounced enrichment in Pb at the SVZ and in Ba at the CAVA. A direct compositional relationship between the arc rocks and the corresponding marine sediments that are subducted at the trenches clearly shows that the compositional signature of the lavas erupted in the different arcs carries an inherited signal from the subducted sediments.  相似文献   

15.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

16.
The strength of the oceanic and continental lithosphere has important controls on some of the major geological processes on earth including the operation of plate tectonics and the long-term stability of the continental roots.However,explaining these major geological features from the experimental and theoretical studies on the strength of rocks is challenging and some of the existing models for the strength of the lithosphere do not explain these main geological observations.A brief review is provided to s...  相似文献   

17.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

18.
蛇绿岩型金刚石和铬铁矿深部成因   总被引:5,自引:0,他引:5  
地球上的原生金刚石主要有3种产出类型,分别来自大陆克拉通下的深部地幔金伯利岩型金刚石、板块边界深俯冲变质岩中超高压变质型金刚石,和陨石坑中的陨石撞击型金刚石。在全球5个造山带的10处蛇绿岩的地幔橄榄岩或铬铁矿中均发现金刚石和其他超高压矿物的基础上,我们提出地球上一种新的天然金刚石产出类型,命名为蛇绿岩型金刚石。认为蛇绿岩型金刚石普遍存在于大洋岩石圈的地幔橄榄岩中,并提出蛇绿岩型金刚石和铬铁矿的深部成因模式。认为早期俯冲的地壳物质到达地幔过渡带(410~660 km深度)后被肢解,加入到周围的强还原流体和熔体中,当熔融物质向上运移到地幔过渡带顶部,铬铁矿和周围的地幔岩石以及流体中的金刚石等深部矿物一并结晶,之后,携带金刚石的铬铁矿和地幔岩石被上涌的地幔柱带至浅部,经历了洋盆的拉张和俯冲阶段,最终在板块边缘就位。  相似文献   

19.
Deep marine deposits of the Gramscatho Basin of south Cornwall reflect two tectonic regimes; Early to Middle Devonian rifting of continental lithosphere with formation of oceanic lithosphere to the south, and Middle Devonian to earliest Carboniferous convergence along its southern margin. Sediments on thinned continental crust to the north and oceanic lithosphere to the south were juxtaposed in the Late Devonian when nappes of deep water flysch and olistostrome were thrust up on to the northern continental margin of the basin. Basin closure was accommodated by forward propagating thrust nappes, accompanied by penecontemporaneous sedimentation. The stratigraphical sequences of major nappes illustrate the progradation of flysch with climactic sedimentation of olistostrome in late Mid- to Late Devonian times. The Lizard Complex, including the Lizard ophiolite, within that nappe stack, constitutes part of one of the GCR sites which are largely in the allochthonous rocks. Many of those sites feature the olistostrome, Roseland Breccia Formation, with its great variety of sedimentary, igneous and metamorphic clasts (up to 1.5 km), and the association of ocean floor basalt and penecontemporaneous acidic volcanics indicative of the coming together of oceanic and continental plates. A site at the top of the parautochthonous continental margin succession displays the erosion products of the youngest nappe as it emerged and advanced across the sediment surface, marking closure of the oceanised Gramscatho Basin and continental collision.  相似文献   

20.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号