首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The effect of water on heat capacity has been determined for four series of hydrated synthetic aluminosilicate glasses and supercooled liquids close to albite, phonolite, trachyte, and leucogranite compositions. Heat capacities were measured at atmospheric pressure by differential scanning calorimetry for water contents between 0 and 4.9 wt % from 300 K to about 100 K above the glass transition temperature (Tg). The partial molar heat capacity of water in polymerized aluminosilicate glasses, which can be considered as independent of composition, is (J/mol K). In liquids containing at least 1 wt % H2O, the partial molar heat capacity of water is about 85 J/mol K. From speciation data, the effects of water as hydroxyl groups and as molecular water have tentatively been estimated, with partial molar heat capacities of 153 ± 18 and 41 ± 14 J/mol K, respectively. In all cases, water strongly increases the configurational heat capacity at Tg and exerts a marked depressing effect on Tg, in close agreement with the results of viscosity experiments on the same series of glasses. Consistent with the Adam and Gibbs theory of relaxation processes, the departure of the viscosity of hydrous melts from Arrhenian variations correlates with the magnitude of configurational heat capacities.  相似文献   

2.
A review of published and newly measured densities for 40 hydrous silicate glasses indicates that the room-temperature partial molar volume of water is 12.0 ± 0.5 cm3/mol. This value holds for simple or mineral compositions as well as for complex natural glasses, from rhyolite to tephrite compositions, prepared up to 10–20 kbar pressures and containing up to 7 wt% H2O. This volume does not vary either with the molar volume of the water-free silicate phase, with its degree of polymerization or with water speciation. Over a wide range of compositions, this constant value implies that the volume change for the reaction between hydroxyl ions and molecular water is zero and that, at least in glasses, speciation does not depend on pressure. Consistent with data from Ochs and Lange (1997, 1999), systematics in volume expansion for SiO2–M2O systems (M=H, Li, Na, K) suggests that the partial molar thermal expansion coefficient of H2O is about 4 × 10−5 K−1 in silicate glasses. Received: 30 June 1999 / Accepted: 5 November 1999  相似文献   

3.
A water budget analysis for the Cedar River watershed in northeastern Iowa was conducted to determine the water balance during the summer months of 2000. The watershed has eight major tributaries that comprise a drainage area of 20,242 km2, of which 81% is agricultural land. Water budgets are essential when examining the movement of agricultural chemicals as well as nutrients within the system. The water budget was determined using the hydrologic mass-balance equation, which states that [inflow = outflow - storage]. The inflow components were measured individually and included precipitation, tributary and Cedar River baseflow. The outflow components included evaporation, transpiration, tributary and Cedar River discharge. The results of this study indicate a slightly larger volume of water leaving the watershed (6.24᎒9 m3) than entering (6.21᎒9 m3). The surplus of the outgoing water (0.5%) is most likely due to an overestimation of transpiration, or the contribution of water from the intermittent streams not measured during the study. Calculations of nutrient flux showed that approximately 2.99᎒6 kg of nitrogen and 2.39᎒5 kg of phosphorus were lost from the watershed during the study.  相似文献   

4.
The molar volumes of 19 hydrous albitic liquids (1.9 to 6.1 wt% H2Ototal) were determined at one bar and 505–765 K. These volume data were derived from density measurements on hydrous glasses at 298 K, followed by measurements of the thermal expansion of each glass from 298 K to its respective glass transition temperature. The technique exploits the fact that the volume of a glass is equal to that of the corresponding liquid at the limiting fictive temperature (T f′), and that T f′ can be approximated as the temperature near the onset of the rapid increase in thermal expansion that occurs in the glass transition interval. The volume data of this study were combined with available volume data for anhydrous, Na2O-Al2O3-SiO2 liquids to derive the partial molar volume (±1) of the H2O component in an albitic melt at ∼565 K and one bar. To extend the determination of to higher temperatures and pressures, the molar volumes of the hydrous albitic liquids determined in this study were combined with those measured by previous authors at 1023–1223 K and 480–840 MPa, leading to the following fitted values (±1) at 1673 K and one bar: (±0.46)×10−3 cm−3/mol-K, and dVˉ H 2 O total /dP=−3.82 (±0.36)×10−4 cm3/mol-bar. The measured molar volumes of this study and those of previous authors can be recovered with a standard deviation of 0.5%, which is within the respective experimental errors. There is a significant difference between the values for derived in this study as a function of temperature and pressure and those obtained from an existing polynomial, primarily caused by the previous absence of accurate density measurements on anhydrous silicate liquids. The coefficients of thermal expansion (=4.72×10−4/K) and isothermal compressibility ( T =1.66×10−5/bar) for the H2O component at 1273 K and 100 MPa, indicate that H2Ototal is the single most expansive and compressible component in silicate liquids. For example, at 1473 K and 70 MPa (conditions of a mid-ocean ridge crustal magma chamber), the presence of just 0.4 wt% H2O will decrease the density of a basaltic liquid by more than one percent. An equivalent decrease in melt density could be achieved by increasing the temperature by 175 degrees or the decreasing pressure by 230 MPa. Therefore, even minor quantities of dissolved water will have a marked effect on the dynamic properties of silicate liquids in the crustal environment. Received: 20 August 1996 / Accepted: 15 March 1997  相似文献   

5.
Enthalpies of dissolution in HF solutions have been measured at 323 K for a series of hydrous trachyte glasses. Enthalpies of mixing between water and molten trachyte have then been calculated from heat capacity data for the same set of samples and available enthalpy for pure water. The moderately negative enthalpies of mixing suggested at 1 bar by the measurements made on glasses almost disappear when trachyte liquids and water are referred to the same temperature, and particularly so when enthalpies of mixing are calculated for a few kbars pressure. As found for albite and phonolite liquids, trachyte melts thus appear to mix nearly ideally as far as enthalpy is concerned. These results imply that the enthalpy of exsolution of water from magmas is very small or negligible under the P-T-X conditions relevant to trachytic volcanism, even for complete degassing of up to 5 wt% H2O. Furthermore, the viscosity increase associated with exsolution-driven cooling is negligible compared to the decrease caused directly by water exsolution.  相似文献   

6.
. Riverine water samples were collected from the lower reach hydrometric station Makou of the Xijiang River, in four hydrological seasons during 1997 and 1998. The samples were analyzed for their particulate and dissolved organic carbon. The contents of riverine particulate and dissolved organic carbon changed synchronously during different hydrological processes. The contents of organic carbon and total suspended substances in the riverine water increased with increasing discharge. The mass of organic carbon in the total suspended substances decreased logarithmically with increasing total suspended substances. The transported flux of organic carbon in the Xijiang River drainage is about 10.18᎒6 g of C km–2 year–1, which is two to three times larger than that of the average value in other river systems. Particulate organic carbon is the main component of riverine organic carbon, with a flux of about 8.30᎒6 g of C km–2 year–1.  相似文献   

7.
Equilibrium volumes and expansivities of three liquids in the system anorthite (CaAl2Si2O8)–diopside (CaMgSi2O6) have been derived from dilatometric measurements of the equilibrium length of samples in the glass transition range. The typical temperature range of 40 K for the measurements is limited at low temperature by the very long times necessary to reach structural equilibrium and at high temperature by the penetration of the rod used to measure sample dilatation. Despite such narrow intervals, the expansivities are determined to better than 3% thanks to the high precision with which length changes are measured. The coefficient of volume thermal expansion (1/V dV/dT) of the fully relaxed liquid just above the glass transition is found to decrease linearly from diopside composition (139 ± 4 × 10−6 K−1) to anorthite composition (59 ± 2 × 10−6 K−1). These values are greater than those determined for the same liquids at superliquidus temperatures, demonstrating that expansivities of silicate melts may decrease markedly with increasing temperature. A predictive model based upon partial molar volumes which vary as a linear function of the logarithm of temperature is proposed. Received: 25 February 2000 / Accepted: 29 May 2000  相似文献   

8.
A polycrystalline aggregate of anhydrite was deformed in torsion to a maximum shear strain of 8.1 at 700°C and a maximum shear strain rate of 5᎒-3 s-1. The crystallographic preferred orientation (CPO or texture) was investigated as a function of shear strain/shear strain rate in a radial profile from the centre to the edge of the sample. A deformation texture developed at shear strains of 1.5-2 (corresponding to shear strain rates of 1 to 1.3᎒-3 s-1) and reached a stable position relative to the kinematic frame at a shear strain of 3.7 (2.3᎒-3 s-1). Further shear strain only led to a small increase in texture strength but no change in the orientation relative to the kinematic frame. The CPO is very similar to naturally observed textures and can be explained by the activity of the {001}<010> and {012}<121> slip systems. Although independent mechanical data indicate that a change of mechanism from dislocation- to diffusion-controlled creep occurred at a shear strain of approximately 1.5, the texture does not weaken, but rather increases, in strength with higher shear strains.  相似文献   

9.
This paper outlines the hydraulic characteristics of fractured rock masses and their implication in engineering works. The hydraulic behavior of subsurface fracture systems has been evaluated by means of hydraulic testing using packer tests and by fracture analysis. A comparison of the borehole results with those of surface fracture mapping provides a reasonable correlation between the two methods of measuring fractured rock hydraulic conductivity. The mean hydraulic conductivity value obtained from the boreholes is 36.5 LU (9.26᎒-5 m/s), while the mean value of hydraulic conductivity obtained from field mapping of fracture data is in the order of 1᎒-5 m/s. Based on the hydraulic conductivity values the sandstone rock mass can be considered medium to highly conductive; nevertheless, it seems to be almost impervious at greater depth. The empirical relationships which have been derived between hydraulic conductivity and both rock quality designation (RQD) and rock mass rating (RMR) indices indicated that the mean value of hydraulic conductivity of the rock mass could be estimated to be in the order of 10-5 m/s, which is confirmed by the packer tests.  相似文献   

10.
The thermal expansivities of 10 compositions from within the anorthite-wollastonite-gehlenite (An-Wo-Geh) compatibility triangle have been investigated using a combination of calorimetry and dilatometry on the glassy and liquid samples. The volumes at room temperature were derived from densities measured using the Archimedean buoyancy method. For each sample, density was measured at 298 K using glass that had a cooling-heating history of 10-10 K min−1. The thermal expansion coefficient of the glass from 298 K to the glass transition interval was measured by a dilatometer and the heat capacity was measured using a differential scanning calorimeter from 298 to 1135 K. The thermal expansion coefficient and the heat flow were determined at a heating rate of 10 K min−1 on glasses which were previously cooled at 10 K min−1. Supercooled liquid density, molar volume and molar thermal expansivities were indirectly determined by combining differential scanning calorimetric and dilatometric measurements assuming that the kinetics of enthalpy and shear relaxation are equivalent. The data obtained on supercooled liquids were compared to high-temperature predictions from the models of (Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties. Geochim. Cosmochim. Acta51, 2931-2946; Courtial, P., Dingwell, D.B., 1995. Nonlinear composition dependence of molar volume of melts in the CaO-Al2O3-SiO2 system. Geochim. Cosmochim. Acta59 (18), 3685-3695; Lange, R.A., 1997. A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib. Mineral. Petrol.130, 1-11). The best linear fit combines the supercooled liquid data presented in this study and the high temperature data calculated using the Courtial and Dingwell (1995) model. This dilatometric/calorimetric method of determining supercooled liquid molar thermal expansivity greatly increases the temperature range accessible for thermal expansion. It represents a substantial increase in precision and understanding of the thermodynamics of calcium aluminosilicate melts. This enhanced precision demonstrates clearly the temperature independence of the melt expansions in the An-Wo-Geh system. This contrasts strongly with observations for neighboring system such as anorthite-diopside and raises the question of the compositional/structural origins of temperature dependence of thermal expansivity in multicomponent silicate melts.  相似文献   

11.
The effect of pressure on titanium coordination in glasses, with composition K2TiSi4O11, quenched isobarically from liquids equilibrated at high pressure (5, 10, 15, 20, 25, 30 kbar respectively) and T=1600° C has been investigated by X-ray absorption spectroscopy (XAS). The XANES spectra collected at the Ti K-edge clearly show a variation with pressure that is related to changes in the geometrical environment around the Ti atoms. By comparison with spectra of standard materials, the XANES spectra of the glasses suggest a relatively low average coordination number (near 5) in samples quenched at low pressure and a higher coordination number (near 6) in samples quenched from the highest pressure. The combination of XANES data with density and compressibility measurements supports the idea that a mixture of 6- and lower coordinated (4- and/ or 5-coordinated) Ti geometries are present in the 1 bar glass, and an increasing proportion of 6-coordinated Ti occurs in the glasses synthesized at progressively higher pressures.  相似文献   

12.
Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas   总被引:8,自引:0,他引:8  
This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information, and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal erosion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45᎒6 t a-1) mainly of the Mackenzie River, which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10᎒6 t a-1, more than 70% of which are related to the Lena River. In comparison with the CBS, the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4᎒6 t a-1) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6᎒6 t a-1 is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.  相似文献   

13.
. Cl solubility in evolved alkaline melts was investigated at 860-930 °C and pressures of 25 to 250 MPa using natural trachytes and a synthetic phonolite equilibrated with subcritical fluids in the H2O-(Na,K)Cl system (i.e. silicate melt coexisted with water-rich aqueous fluid and a saline brine). Fluid phase characteristics were identified by examination of fluid inclusions present in the run product glasses and the fluid bulk composition was calculated by mass balance. The Cl contents of trachytic glasses coexisting with subcritical fluids increase linearly with decreasing pressure from 250 to 25 MPa and range from 0.37 to 0.90 wt%; Cl in the phonolitic glass ranges from 0.35 to 0.59 wt%. These values are approximately twice those found in metaluminous rhyolitic melts under similar conditions. Variations from peralkaline to peraluminous composition has little effect on Cl solubility in trachytes, whereas it is a more important factor in phonolites. More generally, melt structure, in particular non-bringing oxygen, appears to strongly influence Cl solubility in silicate melts. The negative correlation between pressure and melt Cl content is governed by the large negative partial volume of NaCl in the vapour phase. No change in Cl solubility is observed between 200 and 250 MPa. Comparison of our experimental results with Cl abundance in glass inclusion and matrix glass from Italian volcanoes can be used to identify those eruptive products preserved in the geologic record which may have been associated with large Cl emissions.  相似文献   

14.
Near-infrared (NIR) absorption bands related to total water (4000 and 7050 cm−1), OH groups (4500 cm−1) and molecular H2O (5200 cm−1) were studied in two polymerised glasses, a synthetic albitic composition and a natural obsidian. The water contents of the glasses were determined using Karl Fischer titration. Molar absorption coefficients were calculated for each of the bands using albitic glasses containing between 0.54 and 9.16 wt.% H2O and rhyolitic glasses containing between 0.97 and 9.20 wt.% H2O. Different combinations of baseline type and intensity measure (peak height/area) for the combination bands at 4500 and 5200 cm−1 were used to investigate the effect of evaluation procedure on calculated hydrous species concentrations. Total water contents calculated using each of the baseline/molar absorption coefficient combinations agree to within 5.8% relative for rhyolitic and 6.5% relative for albitic glasses (maximum absolute differences of 0.08 and 0.15 wt.% H2O, respectively). In glasses with water contents >1 wt.%, calculated hydrous species concentrations vary by up to 17% relative for OH and 11% relative for H2O (maximum absolute differences of 0.33 and 0.43 wt.% H2O, respectively). This variation in calculated species concentrations is typically greater in rhyolitic glasses than albitic. In situ, micro-FTIR analysis at 300 and 100 K was used to investigate the effect of varying temperature on the NIR spectra of the glasses. The linear and integral molar absorption coefficients for each of the bands were recalculated from the 100 K spectra, and were found to vary systematically from the 300 K values. Linear molar absorption coefficients for the 4000 and 7050 cm−1 bands decrease by 16–20% and integral molar absorption coefficients by up to 30%. Depending on glass composition and baseline type, the integral molar absorption coefficients for the absorption bands related to OH groups and molecular H2O change by up to −5.8 and +7.4%, respectively, while linear molar absorption coefficients show less variation, with a maximum change of ∼4%. Using the new molar absorption coefficients for the combination bands to calculate species concentrations at 100 K, the maximum change in species concentration is 0.08 wt.% H2O, compared with 0.39 wt.% which would be calculated if constant values were assumed for the combination band molar absorption coefficients. Almost all the changes in the spectra can therefore be interpreted in terms of changing molar absorption coefficient, rather than interconversion between hydrous species. Received: 17 December 1998 / Revised, accepted 8 July 1999  相似文献   

15.
 The speciation of water dissolved in glasses along the join NaAlSi3O8-KAlSi3O8 has been investigated using infrared spectroscopy. Hydrous melts have been hydrothermally synthesized by chemical equilibration of cylinders of bubble-free anhydrous start glasses with water at 1040° C and 2 kbar. These melts have been isobarically and rapidly (200° C/s) “drop”-quenched to room temperature and then subsequently depressurized. The speciation of water in the quenched glasses reflects the state of water speciation at a temperature (the so-called fictive temperature) where the quenched-in structure of the glasses closely corresponds to the melt structure at equilibrium. This fictive temperature is detectable as the macroscopically measureable glass transition temperature of these melt compositions. A separate set of experiments using vesicular samples of the same chemistry has precisely defined the glass transition temperature of these melts (±5° C) on the basis of homogenization temperatures for water-filled fluid inclusions (Romano et al. 1994). The spectroscopic data on the speciation of water in these quenched glasses has been quantified using experimentally determined absorptivities for OH and H2O for each individual melt composition. The knowledge of glass transition temperatures, together with quantitative speciation data permits an analysis of the temperature dependence of the water speciation over the 113° C range of fictive temperatures obtained for these water-saturated melts. The variation of water speciation, cast as the equilibrium constant K where K = [H2O] [O m ]/[OH]2 is plotted versus the fictive temperature of the melt to obtain the temperature dependence of speciation. Such a plot describes a single linear trend of the logarithm of the equilibrium constant versus reciprocal temperature, implying that the exchange of K for Na has little influence on melt speciation of water. The enthalpy derived from temperature dependence is 36.5(±5) kJ/mol. The results indicate a large variation in speciation with temperature and an insensitivity of the speciation to the K–Na exchange. Received: 8 March 1995/Accepted: 6 June 1995  相似文献   

16.
Densities of 21 silicate liquids have been determined from 1,000 ° to 1,600 ° C. The compositions studied contain from two to eight oxide components and have the following ranges in composition (mole %): SiO2, 35–79%; TiO2, 4–36%; Al2O3, 5–25%; FeO, 11–41%; MgO, 7–28%; CaO, 7–35%; Na2O, 5–50%; and K2O, 4–20%. The compositions thus cover the upper range observed in magmas for each oxide. Precision for each determination of liquid density is always better than ±1%.Volumes/gfw (gram formula weight) calculated from the density measurements and the chemical compositions of the analyzed liquids have been combined with data on 96 silicate liquids reported in the literature. From this data set we derive, by using multiple linear regression, partial molar volumes of the components SiO2, TiO2, A12O3, FeO, MgO, CaO, Na2O, and K2O at five temperatures. The standard deviation of the multiple regression is 1.8% of the molar volumes, which is considered about equal to the total errors due to compositional and instrumental uncertainties.These derived partial molar volumes have been used to calculate volumes/gfw of natural silicate liquids which are found to agree within 1% of the measured values. No compositional dependence of the partial molar volumes can be detected within the error considered to be typical of the measurements. This is further supported by the close agreement between the calculated volumes of CaMgSi2O6 and Fe2SiO2 liquids derived from the initial slopes of their fusion curves and their heats of fusion, and the volumes obtained by summing the respective partial molar volumes. The experimental data indicate that silicate liquids mix ideally with respect to volume, over the temperature and composition range of this data set.  相似文献   

17.
Infrared spectroscopy was used to determine the concentrations of molecular water and hydroxyl groups in hydrous rhyolitic, orthoclasic, jadeitic, and Ca–Al-silicate glasses synthesized by quenching of melts from elevated presure and temperature. The rhyolitic glasses and some of the Ca–Al-silicate glasses were quenched from water-vapor-saturated melts and used to determine the solubility of water in melts of these compositions. For all compositions studied, hydroxyl groups are the dominant hydrous species at low total water contents, whereas molecular water dominates at elevated water contents. Although the trends in species concentrations in all these compositions are similar, the proportions of the two hydrous species are influenced by silicate chemistry: increasing silica content and K relative to Na both favor molecular water over hydroxyl. Results on rhyolitic glass demonstrate that molecular water is also favored by decreasing temperature at T<850°C. For rhyolitic glasses quenched from vapor-saturated melts, the mole fraction of molecular water is proportional to water fugacity for P(H2O)1500 bars, demonstrating that the behavior of molecular water is approximately Henrian at total water contents up to at least several weight percent. Data on water solubility for albitic, orthoclasic, and Ca–Al-silicate melts to higher pressures can also be fit by assuming Henrian behavior for molecular water and can be used to set constraints on the partial molar volume of water in these melts. The demonstration of Henry's law for molecular water in these liquids provides a link between spectroscopic measurements of microscopic species concentrations and macroscopic thermodynamic properties.  相似文献   

18.
The heat capacities of 29 glasses and supercooled liquids in the Na2O-SiO2, Na2O-Al2O3-SiO2, Na2O-(FeO)-Fe2O3-SiO2, and Na2O-TiO2-SiO2 systems were measured in air from 328 to 998 K with a differential scanning calorimeter. The reproducibility of the data determined from multiple heat capacity runs on a single crystal MgO standard is within ± 1% of the accepted values at temperatures ≤ 800 K and within ± 1.5% between 800 and 1000 K. Within the resolution of the data, the heat capacities of sodium silicate and sodium aluminosilicate liquids are temperature independent. Heat capacity data in the supercooled liquid region for the sodium silicates and sodium aluminosilicates were combined and modelled assuming a linear compositional dependence. The derived values for the partial molar heat capacities of Na2O, Al2O3, and SiO2 are 112.35 ± 0.42, 153.16 ± 0.82, and 76.38 ± 0.20 J/gfw · K respectively. The partial molar heat capacities of Fe2O3 and TiO2 could not be determined in the same manner because the heat capacities of the Fe2O3- and TiO2-bearing sodium silicate melts showed varying degrees of negative temperature dependence. The negative temperature dependence to the configurational C P may be related to the occurrence of sub-microscopic domains (relatively polymerized and depolymerized) that break down to a more homogeneous melt structure with increasing temperature. Such an interpretation is consistent with data from in situ Raman, Mössbauer, and X-ray absorption fine structure (XAFS) spectroscopic studies on similar melts.  相似文献   

19.
The heat capacity and vibrational entropy of a calcium aluminate and three peraluminous calcium aluminosilicate glasses have been determined from 2 to 300 K by heat-pulse relaxation calorimetry. Together with previous adiabatic data for six other glasses in the system CaO-Al2O3-SiO2, these results have been used to determine partial molar heat capacities and entropies for five species namely, SiO2, CaO and three different sorts of Al2O3 in which Al is 4-, 5- and 6-fold coordinated by oxygen. Given the determining role of oxygen coordination on low-temperature heat capacity, the composition independent entropies found for SiO2 and CaO indicate that short-range order around Si and Ca is not sensitive to aluminum speciation up to the highest fraction of 25% observed for VAl by NMR spectroscopy. Because of the higher room-temperature vibrational entropy of IVAl2O3 (72.8 J/mol K) compared to VAl2O3 (48.5 J/mol K), temperature-induced changes from IVAl to VAl give rise to a small negative contribution of the order of 1 J/mol K to the partial molar configurational heat capacity of Al2O3 in melts. Near 0 K, pure SiO2 glass distinguishes itself by the importance of the calorimetric boson peak. On a g atom basis, the maximum of this peak varies with the composition of calcium aluminosilicate glasses by a factor of about 2. It does not show smooth variations, however, either as a function of SiO2 content, at constant CaO/Al2O3 ratio, or as a function of Al2O3 content, at constant SiO2 content.  相似文献   

20.
《Applied Geochemistry》2006,21(5):802-812
Development of Raman spectrometry for quantification of water content in natural glasses requires the assessment of the dependence of the technique on glass composition and thermal history. In the low frequency domain, Raman spectra topology varies due to glass depolymerization and substitution in the framework of (Si4+)IV by alkali-balanced (Al3+)IV and (Fe3+)IV in calcalkaline (rhyolite to basaltic andesite) and alkaline (trachyte, phonolite to alkali basalt) glasses. These processes result in strong dependence of previous analytical procedure (internal calibration) on glass composition. Here, we show that an analytical procedure based on calibration to an external standard is only faintly composition-dependent for Si-rich alkaline glasses (trachytes–phonolites). For a given glass composition, thermal history also plays a fundamental role in the choice of Raman procedure for water analysis. Repeated cycles of thermal annealing induce microcrystallization of hydrous trachyte glasses and modify cation distribution in the glass structure. Application of these concepts to analysis of banded obsidians suggests that small-scale heterogeneities in glasses are not simply related to magma degassing, but could depend on thermal history and consequent relaxation paths in the melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号