首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We investigated phase equilibria in the six-component systemNa2O–K2O–Al2O3–SiO2–F2O–1–H2Oat 100 MPa to characterize differentiation paths of naturalfluorine-bearing granitic and rhyolitic magmas. Topaz and cryoliteare stable saturating solid phases in calcium-poor systems.At 100 MPa the maximum solidus depression and fluorine solubilityin evolving silicic melts are controlled by the eutectics haplogranite–cryolite–H2Oat 640°C and 4 wt % F, and haplogranite–topaz–H2Oat 640°C and 2 wt % F. Topaz and cryolite form a binaryperalkaline eutectic at 660°C, 100 MPa and fluid saturation.The low-temperature nature of this invariant point causes displacementof multiphase eutectics with quartz and alkali feldspar towardsthe topaz–cryolite join and enables the silicate liquidusand cotectic surfaces to extend to very high fluorine concentrations(more than 30 wt % F) for weakly peraluminous and subaluminouscompositions. The differentiation of fluorine-bearing magmasfollows two distinct paths of fluorine behavior, depending onwhether additional minerals buffer the alkali/alumina ratioin the melt. In systems with micas or aluminosilicates thatbuffer the activity of alumina, magmatic crystallization willreach either topaz or cryolite saturation and the system solidifiesat low fluorine concentration. In leucogranitic suites precipitatingquartz and feldspar only, the liquid line of descent will reachtopaz or cryolite but fluorine will continue to increase untilthe quaternary eutectic with two fluorine-bearing solid phasesis reached at 540°C, 100 MPa and aqueous-fluid saturation.The maximum water solubility in the haplogranitic melts increaseswith the fluorine content and reaches 12· 5 ±0· 5 wt % H2O at the quartz–cryolite–topazeutectic composition. A continuous transition between hydrousfluorosilicate melts and solute-rich aqueous fluids is not documentedby this study. Our experimental results are applicable to leucocraticfluorosilicic magmas. In multicomponent systems, however, thepresence of calcium may severely limit enrichment of fluorineby crystallization of fluorite. KEY WORDS: granite; rhyolite; topaz; cryolite; magmatic differentiation  相似文献   

2.
The anhydrous phase relations of an uncontaminated (primitive),ferropicrite lava from the base of the Early Cretaceous Paraná–Etendekacontinental flood basalt province have been determined between1 atm and 7 GPa. The sample has high contents of MgO (14·9wt %), FeO* (14·9 wt %) and Ni (660 ppm). Olivine phenocrystshave maximum Fo contents of 85 and are in equilibrium with thebulk rock, assuming a of 0·32. A comparison of our results with previous experimental studiesof high-Mg rocks shows that the high FeO content of the ferropicritecauses an expansion of the liquidus crystallization field ofgarnet and clinopyroxene relative to olivine; orthopyroxenewas not observed in any of our experiments. The high FeO contentalso decreases solidus temperatures. Phase relations indicatethat the ferropicrite melt last equilibrated either at 2·2GPa with an olivine–clinopyroxene residue, or at 5 GPawith a garnet–clinopyroxene residue. The low bulk-rockAl2O3 content (9 wt %) and high [Gd/Yb]n ratio (3·1)are consistent with the presence of residual garnet in the ferropicritemelt source and favour high-pressure melting of a garnet pyroxenitesource. The garnet pyroxenite may represent subducted oceaniclithosphere entrained by the upwelling Tristan starting mantleplume head. During adiabatic decompression, intersection ofthe garnet pyroxenite solidus at 5 GPa would occur at a mantlepotential temperature of 1550°C and yield a ferropicriteprimary magma. Subsequent melting of the surrounding peridotiteat 4·5 GPa may be restricted by the thickness of theoverlying sub-continental lithosphere, such that dilution ofthe garnet pyroxenite melt component would be significantlyless than in intra-oceanic plate settings (where the lithosphereis thinner). This model may explain the limited occurrence offerropicrites at the base of continental flood basalt sequencesand their apparent absence in ocean-island basalt successions. KEY WORDS: continental flood basalt; ferropicrite; mantle heterogeneity; mantle melting; phase relations; pyroxenite  相似文献   

3.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

4.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   

5.
Bulk-rock geochemical compositions of hypabyssal kimberlites,emplaced through the Archaean Kaapvaal craton and ProterozoicNamaqua–Natal belt, are used to estimate close-to-primarymagma compositions of Group I kimberlites (Mg-number = 0·82–0·87;22–28 wt % MgO; 21–30 wt % SiO2; 10–17 wt% CaO; 0·2–1·7 wt % K2O) and Group II kimberlites(Mg-number = 0·86–0·89; 23–29 wt %MgO; 28–36 wt % SiO2; 8–13 wt % CaO; 1·6–4·6wt % K2O). Group I kimberlites are distinguished from GroupII by their lower Ba/Nb (<12), Th/Nb (<1·1) andLa/Nb (<1·1) but higher Ce/Pb (>22) ratios. Thedistinct rare earth element patterns of the two types of kimberlitesindicate a more highly metasomatized source for Group II kimberlites,with more residual clinopyroxene and less residual garnet. Thesimilarity of Sr and Nd isotope ratios and diagnostic traceelement ratios (Ce/Pb, Nb/U, La/Nb, Ba/Nb, Th/Nb) of Group Ikimberlites to ocean island basalts (OIB), but more refractoryMg-numbers and Ni contents, are consistent with derivation ofGroup I kimberlites from subcontinental lithospheric mantle(SCLM) that has been enriched by OIB-like melts or fluids. Sourceenrichment ages and plate reconstructions support a direct associationof these melts or fluids with Mesozoic upwelling beneath southernAfrica of a mantle plume(s), at present located beneath thesouthern South Atlantic Ocean. In contrast, the geochemicalcharacteristics of both on- and off-craton Group II kimberlitesshow strong similarity to calc-alkaline magmas, particularlyin their Nb and Ta depletion and Pb enrichment. It is suggestedthat Group II kimberlites are derived from both Archaean andProterozoic lithospheric mantle source regions metasomatizedby melts or fluids associated with ancient subduction events,unrelated to mantle plume upwelling. The upwelling of mantleplumes beneath southern Africa during the Mesozoic, at the timeof Gondwana break-up, may have acted as a heat source for partialmelting of the SCLM and the generation of both Group I and GroupII kimberlite magmas. KEY WORDS: kimberlite; geochemistry; petrogenesis; mantle plumes; South Africa  相似文献   

6.
The Grønnedal-Ika complex is dominated by layered nephelinesyenites which were intruded by a xenolithic syenite and a centralplug of calcite to calcite–siderite carbonatite. Aegirine–augite,alkali feldspar and nepheline are the major mineral phases inthe syenites, along with rare calcite. Temperatures of 680–910°Cand silica activities of 0·28–0·43 weredetermined for the crystallization of the syenites on the basisof mineral equilibria. Oxygen fugacities, estimated using titanomagnetitecompositions, were between 2 and 5 log units above the fayalite–magnetite–quartzbuffer during the magmatic stage. Chondrite-normalized REE patternsof magmatic calcite in both carbonatites and syenites are characterizedby REE enrichment (LaCN–YbCN = 10–70). Calcite fromthe carbonatites has higher Ba (5490 ppm) and lower HREE concentrationsthan calcite from the syenites (54–106 ppm Ba). This isconsistent with the behavior of these elements during separationof immiscible silicate–carbonate liquid pairs. Nd(T =1·30 Ga) values of clinopyroxenes from the syenites varybetween +1·8 and +2·8, and Nd(T) values of whole-rockcarbonatites range from +2·4 to +2·8. Calcitefrom the carbonatites has 18O values of 7·8 to 8·6and 13C values of –3·9 to –4·6. 18Ovalues of clinopyroxene separates from the nepheline syenitesrange between 4·2 and 4·9. The average oxygenisotopic composition of the nepheline syenitic melt was calculatedbased on known rock–water and mineral–water isotopefractionation to be 5·7 ± 0·4. Nd and C–Oisotope compositions are typical for mantle-derived rocks anddo not indicate significant crustal assimilation for eithersyenite or carbonatite magmas. The difference in 18O betweencalculated syenitic melts and carbonatites, and the overlapin Nd values between carbonatites and syenites, are consistentwith derivation of the carbonatites from the syenites via liquidimmiscibility. KEY WORDS: alkaline magmatism; carbonatite; Gardar Province; liquid immiscibility; nepheline syenite  相似文献   

7.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

8.
The <80 ka basalts–basanites of the Potrillo VolcanicField (PVF) form scattered scoria cones, lava flows and maarsadjacent to the New Mexico–Mexico border. MgO ranges upto 12·5%; lavas with MgO < 10·7% have fractionatedboth olivine and clinopyroxene. Cumulate fragments are commonin the lavas, as are subhedral megacrysts of aluminous clinopyroxene(with pleonaste inclusions) and kaersutitic amphibole. REE modellingindicates that these megacrysts could be in equilibrium withthe PVF melts at 1·6–1·7 GPa pressure. Thelavas fall into two geochemical groups: the Main Series (85%of lavas) have major- and trace-element abundances and ratiosclosely resembling those of worldwide ocean-island alkali basaltsand basanites (OIB); the Low-K Series (15%) differ principallyby having relatively low K2O and Rb contents. Otherwise, theyare chemically indistinguishable from the Main Series lavas.Sr- and Nd-isotopic ratios in the two series are identical andvary by scarcely more than analytical error, averaging 87Sr/86Sr= 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952(SD=0·000025). Such compositions would be expected ifboth series originated from the same mantle source, with Low-Kmelts generated when amphibole remained in the residuum. ThreePVF lavas have very low Os contents (<14 ppt) and appearto have become contaminated by crustal Os. One Main Series picritehas 209 ppt Os and has a Os value of +13·6, typical forOIB. This contrasts with published 187Os/188Os ratios for KilbourneHole peridotite mantle xenoliths, which give mostly negativeOs values and show that Proterozoic lithospheric mantle formsa thick Mechanical Boundary Layer (MBL) that extends to 70 kmdepth beneath the PVF area. The calculated mean primary magma,in equilibrium with Fo89, has Na2O and FeO contents that givea lherzolite decompression melting trajectory from 2·8GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modellingof REE abundances in Main Series Mg-rich lavas is successfulfor a model invoking decompression melting of convecting sub-lithosphericlherzolite mantle (Nd = 6·4; Tp 1400°C) between90 and 70 km. Nevertheless, such a one-stage model cannot accountfor the genesis of the Low-K Series because amphibole wouldnot be stable within convecting mantle at Tf 1400°C. Thesemagmas can only be accommodated by a three-stage model thatenvisages a Thermal Boundary Layer (TBL) freezing conductivelyonto the 70 km base of the Proterozoic MBL during the 20 Myrtectonomagmatic quiescence before PVF eruptions. As it grew,this was veined by hydrous small-fraction melts from below.The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-meltedthe TBL and caused the magmatism. KEY WORDS: western USA; picrites; Sr–Nd–Os isotopes; petrogenetic modelling; thermal boundary layer  相似文献   

9.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   

10.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

11.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

12.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

13.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

14.
The Laki eruption involved 10 fissure-opening episodes thatproduced 15·1 km3 of homogeneous quartz-tholeiite magma.This study focuses on the texture and chemistry of samples fromthe first five episodes, the most productive period of the eruption.The samples comprise pumiceous tephra clasts from early falloutdeposits and lava surface samples from fire-fountaining andcone-building activity. The fluid lava core was periodicallyexposed at the surface upon lobe breakout, and its characteristicsare preserved in glassy selvages from the lava surface. In allsamples, plagioclase is the dominant mineral phase, followedby clinopyroxene and then olivine. Samples contain <7 vol.% of euhedral phenocrysts (>100 µm) with primitivecores [An* = 100 x Ca/(Ca + Na) >70; Fo > 75; En* = 100x Mg/(Mg + Fe) >78] and more evolved rims, and >10 vol.% of skeletal, densely distributed groundmass crystals (<100µm), which are similar in composition to phenocryst rims(tephra: An*58–67, Fo72–78, En*72–81; lava:An*49–70, Fo63–78, En57–78). Tephra and lavahave distinct vesicularity (tephra: >40 vol. %; lava: <40vol. %), groundmass crystal content (tephra: <10 vol. %;lava: 20–30 vol. %), and matrix glass composition (tephra:5·4–5·6 wt % MgO; lava: 4·3–5·0wt % MgO). Whole-rock and matrix glass compositions define atrend consistent with liquid evolution during in situ crystallizationof groundmass phases. Plagioclase–glass and olivine–glassthermometers place the formation of phenocryst cores at 10 kmdepth in a melt with 1 wt % H2O, at near-liquidus temperatures(1150°C). Phenocryst rims and groundmass crystals formedclose to the surface, at 10–40°C melt undercoolingand in an 10–20°C cooler drier magma (0–0·1wt % H2O), causing an 10 mol % drop in An content in plagioclase.The shape, internal zoning and number density of groundmasscrystals indicate that they formed under supersaturated conditions.Based on this information, we propose that degassing duringascent had a major role in rapidly undercooling the melt, promptingintensive shallow groundmass crystallization that affected themagma and lava rheology. Petrological and textural differencesbetween tephra and lava reflect variations in the rates of magmaascent and the timing of surface quenching during each eruptiveepisode. That in turn affected the time available for crystallizationand subsequent re-equilibration of the melt to surface (degassed)conditions. During the explosive phases, the rates of magmaascent were high enough to inhibit crystallization, yieldingcrystal-poor tephra. In contrast, pervasive groundmass crystallizationoccurred in the lava, increasing its yield strength and causinga thick rubbly layer to form during flow emplacement. Lava selvagescollected across the flow-field have strikingly homogeneousglass compositions, demonstrating the high thermal efficiencyof fluid lava transport. Cooling is estimated as 0·3°C/km,showing that rubbly surfaced flows can be as thermally efficientas tube-fed phoehoe lavas. KEY WORDS: lava; crystallization; basalt; cooling rate; pressure; geobarometry; PT conditions; plagioclase; degassing; Laki, Iceland  相似文献   

15.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

16.
The mutual solubility in the system corundum–hematite[-(Al, Fe3+)2O3] was investigated experimentally using bothsynthetic and natural materials. Mixtures of -Al2O3 and -Fe2O3(weight ratios of 8:2 and 10:1) were used as starting materialsfor synthesis experiments in air at 800–1300°C withrun times of 7–34 days. Experiments at 8–40 kbarand 490–1100°C were performed in a piston-cylinderapparatus (run times of 0·8–7·4 days) usinga natural diasporite consisting of 60–70 vol. % diasporeand 20–30 vol. % Ti-hematite. During the diasporite–corunditetransformation, the FeTiO3 component (12–18 mol %) ofTi-hematite only slightly increased, implying that oxygen fugacitywas maintained at high values. Run products were studied byelectron microprobe and X-ray diffraction (Rietveld) techniques.An essentially linear volume of mixing exists in the solid solutionwith a slight positive deviation at the hematite side. Up to1000°C, corundum contains <4 mol % Fe2O3 and hematite<10 mol % Al2O3; at 1200°C these amounts increase to9·3 and 17·0 mol %, respectively. At 1300°Chematite was no longer stable and coexists with the orthorhombic phase . The present results agree with corundum (solvus) compositions obtained inprevious studies but indicate a larger solubility of Al in hematite.The miscibility gap in the solution can be modelled with anasymmetric Margules equation with interaction parameters (2uncertainties): ; ; ; . Application of the corundum–hematite solution as a solvus geothermometer is limited because of thescarcity of suitable rock compositions. KEY WORDS: corundum; hematite; corundum–hematite miscibility gap; experimental study; Margules model; metabauxite  相似文献   

17.
The Jozini and Mbuluzi rhyolites and Oribi Beds of the southernLebombo Monocline, southeastern Africa, have geochemical characteristicsthat indicate they were derived by partial melting of a mixtureof high-Ti/Zr and low-Ti/Zr Sabie River Basalt Formation types.Compositional variations within the different rhyolite typescan largely be explained by subsequent fractional crystallization.The Sr- and Nd-isotope composition of the rhyolites is uniqueamongst Gondwana silicic large igneous provinces, having Ndvalues close to Bulk Earth (–0·94 to 0·35)and low, but more variable, initial 87Sr/86Sr ratios (0·7034–0·7080).Quartz phenocryst 18O values indicate that the rhyolite magmashad 18O values between 5·3 and 6·7, consistentwith derivation from a basaltic protolith with 18O values between4·8 and 6·2. The low-18O rhyolites (< 6·0)come from the same stratigraphic horizon and are overlain andunderlain by rhyolites with more ‘normal’ 18O magmavalues. These low-18O rhyolites cannot have been produced byfractional crystallization or partial melting of mantle-derivedbasaltic material. The rhyolites have low water contents, makingit unlikely that the low 18O values are the result of post-emplacementalteration. Modification of the source by fluid–rock interactionat elevated temperatures is the most plausible mechanism forlowering the 18O magma value. It is proposed that the low-18Orhyolites were derived by melting of earlier altered rhyolitein calderas situated to the east, which were not preserved afterGondwana break-up. KEY WORDS: rhyolite; Lebombo; stable and radiogenic isotopes; low-18O magmas; partial melting  相似文献   

18.
The near-liquidus crystallization of a high-K basalt (PST-9golden pumice, 49·4 wt % SiO2, 1·85 wt % K2O,7·96 wt % MgO) from the present-day activity of Stromboli(Aeolian Islands, Italy) has been experimentally investigatedbetween 1050 and 1175°C, at pressures from 50 to 400 MPa,for melt H2O concentrations between 1·2 and 5·5wt % and NNO ranging from –0·07 to +2·32.A drop-quench device was systematically used. AuPd alloys wereused as containers in most cases, resulting in an average Feloss of 13% for the 34 charges studied. Major crystallizingphases include clinopyroxene, olivine and plagioclase. Fe–Tioxide was encountered in a few charges. Clinopyroxene is theliquidus phase at 400 MPa down to at least 200 MPa, followedby olivine and plagioclase. The compositions of all major phasesand glass vary systematically with the proportion of crystals.Ca in clinopyroxene sensitively depends on the H2O concentrationof the coexisting melt, and clinopyroxene Mg-number shows aweak negative correlation with NNO. The experimental data allowthe liquidus surface of PST-9 to be defined. When used in combinationwith melt inclusion data, a consistent set of pre-eruptive pressures(100–270 MPa), temperatures (1140–1160°C) andmelt H2O concentrations is obtained. Near-liquidus phase equilibriaand clinopyroxene Ca contents require melt H2O concentrations<2·7–3·6 and 3 ± 1 wt %, respectively,overlapping with the maximum frequency of glass inclusion data(2·5–2·7 wt % H2O). For olivine to crystallizeclose to the liquidus, pressures close to 200 MPa are needed.Redox conditions around NNO = +0·5 are inferred fromclinopyroxene compositions. The determined pre-eruptive parametersrefer to the storage region of golden pumice melts, which islocated at a depth of around 7·5 km, within the metamorphicarc crust. Golden pumice melts ascending from their storagezone along an adiabat will not experience crystallization ontheir way to the surface. KEY WORDS: basalt; pumice; experiment; phase equilibria; Stromboli  相似文献   

19.
Corella marbles in the Mary Kathleen Fold Belt were infiltratedby fluids during low-pressure (200-MPa) contact metamorphismassociated with the intrusion of the Burstall granite at 1730–1740Ma. Fluids emanating from the granite [whole-rock (WR) 18O=8.1–8.6%]produced Fe-rich massive and banded garnet—clinopyroxeneskarns [18O(WR)=9.1–11.9%]. Outside the skarn zones, marblemineralogies define an increase in temperature (500 to >575C) and XCO2 (0.05 to >0.12) towards the granite, andmost marbles contain isobarically univariant or invariant assemblagesin the end-member CaO–MgO–Al2O3–SiO2–H2O–CO2system. Marbles have calcite (Cc) 18O and 13C values of 12.3–24.6%and –1.0 to –3.9%, respectively. A lack of down-temperaturemineral reactions in the marbles suggests that pervasive fluidinfiltration did not continue after the thermal peak of contactmetamorphism. The timing of fluid flow probably correspondsto a period of high fluid production and high intrinsic permeabilitiesduring prograde contact metamorphism. The petrology and stableisotope geochemistry of the marbles suggest that these rockswere infiltrated by water-rich fluids. If fluid flow occurredup to the peak of contact metamorphism, the mineralogical andisotopic resetting is best explained by fluids flowing up-temperaturetoward the Burstall granite. However, if fluid flow ceased beforthe peak of regional metamorphism, the fluid flow directioncannot be unambiguously determined. At individual outcrops,marble 18O(Cc) values vary by several permil over a few squaremetres, suggesting that fluid fluxes varied by at least an orderof magnitude on the metre to tens-of-metre scale. Fluids werefocused across lithological layering; however, mesoscopic fracturesare not recognized. The focusing of fluids was possibly viamicrofractures, and the variation in the degree of resettingmay reflect variations in microcrack density and fracture permeability.The marble—skarn contacts represent a sharp discontinuityin both major element geochemistry and 18O values, suggestingthat, at least locally, little fluid flow occurred across thesecontacts.  相似文献   

20.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号