首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: K–Ar ages of the following porphyry Cu deposits in the western Luzon arc are determined: Lobo-Boneng (10.50.4 Ma), Santo Niño (9.50.3 Ma), Black Mountain (2.10.1 Ma), Dizon (2.50.2 Ma) and Taysan (7.30.2 Ma). Microphenocrys-tic apatite in the late Cenozoic intermediate to silicic intrusions associated with porphyry Cu deposits in the western Luzon arc contains sulfur as SO3 detectable by electron probe microanalyzer. Sulfur is supposed to have been accommodated dominantly as oxidized species in oxidizing hydrous magmas that generated porphyry Cu deposits. Likewise, such high SO3 contents in microphenocrystic apatite are common characteristics of the intermediate to silicic magmatism of the western Luzon arc, from tonalitic rocks of the Luzon Central Cordillera of about 15 Ma to an active magmatism at Mount Pinatubo. Thus, the western Luzon arc has been generating porphyry Cu mineralization associated with oxidizing hydrous intermediate to silicic magmatism related to eastward subduction, since Miocene to the present day. Intermediate to silicic rocks since 15 Ma to present-day western Luzon arc generally show high whole-rock Sr/Y ratio ranging from 20 to 184. However, porphyry Cu deposit is not necessarily related to the rocks that show higher Sr/Y ratios compared to the other barren rocks in the western Luzon arc. The characteristics of the intermediate to silicic magma associated with porphyry Cu deposit are not attributed to the composition of the source material of the magma, but to the properties defined by the high activity of oxidized species of sulfur in the fluid phase that is encountered during the generation of intermediate to silicic magmas.  相似文献   

2.
Abstract. Sulfur isotope ratios of cinnabar from Hg deposits and stibnite, jamesonite and berthierite from Sb deposits in Japan are examined in order to understand metallogeneses of Hg and Sb deposits in Japanese island arcs. The studied Hg and Sb deposits include the Hg deposit at Yamato‐suigin (Honshu) and the Sb deposit at Ichinokawa (Shikoku) in the Southwest Japan arc. In addition, Hg deposits including Itomuka and Ryushoden in central Hokkaido and Hg and Sb mineralizations in Northeast Japan arc are examined. The δ34S values of cinnabar from the Hidaka‐Kitami district, central Hokkaido, including the Itomuka and Ryushoden deposits range widely, from ‐10 to +16 %o, the highest values encountered at the Samani deposit. The δ34S values of cinnabar from other areas in Japan range from ‐12 to +5 %o, having δ34S values higher than +2 %o from southwestern Hokkaido (Meiji deposit), Shikoku (Suii deposit) and Kyushu (Hasami and Yamagano deposits). On the other hand, the δ34S values of stibnite from all areas in Japan range from ‐14 to +5 %o, having positive δ34S values higher than +2 %o up to +5 %o from southwestern Hokkaido (Yakumo, Toyotomi and Teine deposits) and eastern‐central Honshu (Hachiman and Daikoku deposits). The variation in δ34S values of Hg and Sb deposits may reflect the variation in δ34S values of country rocks or variation in mixing ratio of sulfur extracted from the country rocks, sulfur derived from seawater sulfate, and sulfur derived from magmatic emanations. The relatively high δ34S values of cinnabar and stibnite higher than +2 %o from southwestern Hokkaido, eastern‐central Honshu and Kyushu are probably caused by contribution of volcanic emanation from arc magmas having positive σδ34S values, whereas the positive δ34S values of cinnabar higher than +2 %o from Suii deposit in Shikoku may be attributed to structurally substituted sulfate in limestone country rocks and/or sulfur derived from seawater sulfate. However, the wide range of the δ34S values of cinnabar from the Hidaka‐Kitami district, central Hokkaido, is difficult to explain at this moment. Other relatively low, negative δ34S values of cinnabar and stibnite, berthierite from other areas in Japan may be attributed to 1) incorporation of isotopically light sedimentary sulfur or sulfur derived from ilmenite‐series silicic magma, or 2) less contribution of volcanic emanation from arc magmas having positive σδ34S values.  相似文献   

3.
The vertical section of microearthquakes, determined accurately by using the Hokkaido University network, shows two dipping zones (the double seismic zone) 25–30 km apart in the depth range of 80–150 km beneath the middle of Hokkaido in the southwestern side of the Kurile arc. Hypocentral distribution of large earthquakes (mb > 4) based on the ISC (International Seismological Centre) bulletin also shows the double seismic zone beneath the same region. The hypocentral distribution indicates that the frequency of events occurring in the lower zone is four times greater than that in the upper zone. The difference in seismic activity between the two zones beneath Hokkaido is in contrast with the region beneath northeastern Honshu in the northeastern Japan arc.Composite focal mechanisms of microearthquakes and individual mechanisms of large events mainly characterize the down-dip extension for the lower zone as is observed beneath northeastern Honshu. For the upper zone, however, the stress field is rather complex and not necessarily similar to that beneath northeastern Honshu. This may be considered to indicate the influence of slab contortion or transformation in the Hokkaido corner between the Kurile and the northeastern Japan arcs.  相似文献   

4.
Abstract: The Santo Tomas II (Philex) deposit is a porphyry Cu‐Au deposit, located in the southern part of the Baguio mineral district, Benguet Province, northern Luzon, Philippines. The Santo Tomas II deposit is associated with an intrusive complex consisting of four rock types that are distinguished based on petrography. They are 1) post‐ore clinopyroxene‐bearing hornblende andesite porphyry, 2) ore‐generating hornblende andesite porphyry, 3) hornblende quartz diorite porphyry and 4) porphyritic hornblende quartz diorite. K‐Ar age of hydrothermal biotitization was estimated to be 1.5±0.4 Ma. A number of intrusive bodies having broadly similar petrography and K‐Ar age occur in the vicinity of the Santo Tomas II deposit, such as at Clifton, Ligay (Binang), Bumolo (Waterhole) and Philex Main Camp areas. The intrusions at the Santo Tomas II deposit and in the vicinity are characterized by high XMg (Mg/[Mg+Fe] atomic ratio, about 0.7 or higher) of mafic silicate phenocrysts such as hornblende, and high sulfur contents (> 0.2 wt% as SO3) in accessory microphenocrystic apatite, suggesting a highly oxidizing condition. Sulfur is accommodated dominantly as oxidized species since the crystallization of phe‐nocrysts. Sub‐dendritic rim of tremolitic amphibole on hornblende phenocryst in the ore‐generating andesite porphyry at the Santo Tomas II deposit suggests interaction of magma and aqueous fluid(s) exsolved due to decompression during intrusion. Dissemination of magnetite is associated with hydrothermal biotitization and is followed by sheeted and stockwork quartz veinlets having silician magnetite and rare titanohematite instead of Cu‐Fe sulfides. The silician magnetite‐rich quartz veinlet was formed at fO2 near the hematite‐magnetite buffer at nearly magmatic temperature, where sulfur dominantly existed as oxidized species such as SO2. Chalcopyrite and bornite, which commonly exhibit micrographic texture often accompanying Pd telluride and native gold/Au‐rich electrum, are associated with subsequent anhydrite (‐quartz) veinlets and stringers. Both intermediate solid solution (iss) and bornite solid solution (bnss) are thought to have coprecipitated primarily at above 500°C based on fluid inclusion microthermometry and sulfur isotope thermometry applied for anhydrite and associated chal‐copyrite and bornite. The initial iss is considered to have converted to chalcopyrite partly replacing bnss during cooling. The hypersaline polyphase fluid inclusions abundantly found in the sheeted and stockwork quartz as well as anhydrite veinlets with scarce gaseous inclusions suggest that they have been trapped in the two aqueous fluid immiscible region. The western Luzon arc associated with porphyry Cu mineralization is characterized by oxidized hydrous magmatism and shallow emplacement, and by the source of sulfur enriched in 34S.  相似文献   

5.
The Miocene Kaikomagatake pluton is one of the Neogene granitoid plutons exposed in the Izu Collision Zone, which is where the juvenile Izu-Bonin oceanic arc is colliding against the mature Honshu arc. The pluton intrudes into the Cretaceous to Paleogene Shimanto accretionary complex of the Honshu arc along the Itoigawa-Shizuoka Tectonic Line, which is the collisional boundary between the two arcs. The pluton consists of hornblende–biotite granodiorite and biotite monzogranite, and has SiO2 contents of 68–75 wt%. It has high-K series compositions, and its incompatible element abundances are comparable to the average upper continental crust. Major and trace element compositions of the pluton show well-defined chemical trends. The trends can be interpreted with a crystal fractionation model involving the removal of plagioclase, biotite, hornblende, quartz, apatite, and zircon from a potential parent magma with a composition of ~68 wt% SiO2. The Sr isotopic compositions, together with the partial melting modeling results, suggest that the parent magma is derived by ~53% melting of a hybrid lower crustal source comprising ~30% Shimanto metasedimentary rocks of the Honshu arc and ~70% K-enriched basaltic rocks of the Izu-Bonin rear-arc region. Together with previous studies on the Izu Collision Zone granitoid plutons, the results of this study suggest that the chemical diversity within the parental magmas of the granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the Izu-Bonin arc), as well as a variable contribution of the metasedimentary component in the lower crustal source regions. In addition, the petrogenetic models of the Izu Collision Zone granitoid plutons collectively suggest that the contribution of the metasedimentary component is required to produce granitoid magma with compositions comparable to the average upper continental crust. The Izu Collision Zone plutons provide an exceptional example of the transformation of a juvenile oceanic arc into mature continental crust.  相似文献   

6.
Vegetation and climate during the last glacial maximum in Japan   总被引:1,自引:0,他引:1  
The Japanese Archipelago was almost entirely covered by coniferous forests during the last glacial maximum. Northern Hokkaido was distinguished by coniferous parkland and tundra vegetation, while southern Hokkaido and northernmost Honshu were covered by northern boreal coniferous forests consisting mainly of Picea jezoensis, Picea glehnii, Abies sachalinensis, and Larix gmelinii; Tsuga was missing from the forest. More diverse boreal forests including species from Sakhalin and northern Japan grew together in northeastern Honshu. Central Honshu and the mountains of southwestern Japan supported subalpine coniferous forests which are now mainly restricted in distribution to the central mountains. Temperate coniferous forests (Picea polita, Abies firma, and Tsuga sieboldii) existed principally in the modern mid-temperate and evergreen laurel-oak forest regions. Haploxylon pine and tree birch were also abundant in the boreal and cool-temperate zones, as was Diploxylon in the southern temperate zone. Significant populations of Fagus were found along the Pacific coasts of Kyushu and Shikoku, but they were too small to be defined as a beech forest zone. Quercetum mixtum (Quercus, Ulmus, and Tilia) was more common in the coastal lowlands of southwestern Japan than those of northeastern Honshu; it was completely eliminated from Hokkaido. The reduced mean August temperature inferred from the floral assemblages showed a latitudinal gradient 20,000 yr ago; it was 8–9°C in northern Hokkaido, 7.7–8.7°C in northernmost Honshu, 7.2–8.4°C in the central mountains, 6.5°C in the Chugoku District, and 5–6°C in Kyushu. The probable annual precipitation ranged from 1050 to 1300 mm along coasts in southwestern Japan during the culmination of the last glaciation.  相似文献   

7.
田丰  冷成彪  张兴春  田振东  张伟 《岩石学报》2021,37(9):2889-2909
西藏冈底斯带中段的岗讲斑岩铜-钼矿床发育多期次侵入体,而成矿作用主要与其中一期岩体(流纹英安斑岩)密切相关。为探究其原因,本文对岗讲斑岩铜-钼矿床中发育的各期次侵入体进行了全岩主、微量元素分析,并重点研究各期次侵入体内部新鲜斑晶(黑云母、斜长石)和副矿物(锆石、磷灰石)的化学成分和结构特征。结果表明,矿区各期次侵入岩均属于高钾钙碱性系列,具有相近的锆石饱和温度,都来自较为氧化的岩浆。此外,相比其他期次侵入岩,主成矿期的流纹英安斑岩中的磷灰石具有较高的SO_3、Cl含量,较低的F含量;黑云母含有较高的Cl含量和较低的F含量;同时,斜长石发育反环带。这些证据表明,在主成矿期岩浆就位之前,存在富S、Cl的偏基性岩浆注入了深部岩浆房,并发生岩浆混合作用,这不仅导致了主成矿期斑岩体的就位,同时还诱发流体出溶进入浅部岩浆房,并最终形成岗讲斑岩铜-钼矿床。  相似文献   

8.
Collision of the Izu arc in Central Japan is discussed with a focus on its tectonic effects to the east of the arc, in the Miura-Boso Peninsulas of Honshu. The tectonics are the combination of the following events: Philippine Sea plate spreading in the Late Oligocene to Early Miocene; opening of the Sea of Japan in the middle Miocene; obduction of ophiolitic rocks in the northeasternmost corner of the Philippine Sea plate, and forearc sedimentation between the Honshu and Izu arcs. Oblique subduction has shifted the plate boundary from northeast to southwest, from the present Mineoka Tectonic Belt through the Miura Fold Belt to the Sagami trough since the Miocene. Remarkable right-lateral transpressional deformation occurred throughout this period of the oblique collision and subduction.  相似文献   

9.
This paper presents abundances of major and trace elements of apatites in granitic rocks associated with different types of ore deposits in Central Kazakhstan on the basis of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the concentrations and ratios of elements in apatites from different granitoid rocks show distinct features, and are sensitive to magma evolution, petrogenetic and metallogenetic processes. Apatites in the rocks associated with Mo‐W deposits have high content of F and MnO, low content of Cl, which may be indicative of sedimentary sources, while apatites from a Pb‐Zn deposit show relatively high content of Cl and low F content, which possibly suggest a high water content. In these apatites, Sr contents decrease, while Mn and Y contents increase with magma evolution. This relationship reflects that these elements in apatites are related with the degree of magmatic differentiation. Four types of REE patterns in apatites are identified. Type 1 character of highest (La/Yb)N in apatites of Aktogai porphyry Cu‐Mo deposit, Sayak‐I skarn Cu deposit and Akzhal skarn Pb‐Zn depposit is likely produced by the crystallization of heavy REE‐enriched minerals. Type 2 character of upward‐convex light REE in apatite of Aktogai porphyries likely results from La‐enriched mineral crystallization. Type 3 feature of Nd depletion in apatites of East Kounrad and Zhanet deposits both from Mo‐W deposits primarily inherits the character of host‐rock. Type 4 apatites of Aktogai deposit and Akshatau W‐Mo deposit with wide range of REE contents may suggest that apatites crystallize under a wide temperature range. Three types of apatite with distinct redox states are identified based on Eu anomaly. The Aktogai apatite with slight negative Eu anomaly displays the most oxidized state of the magma, and the apatites of other samples at Aktogai, East Kounrad and Akzhal with moderate negative Eu anomaly show moderate oxidizing condition of these rocks, while the remaining apatites with strong En anomaly indicate a moderate reductive state of these rocks.  相似文献   

10.
The Miocene Kofu Granitic Complex (KGC) occurs in the Izu CollisionZone where the Izu–Bonin–Mariana (IBM) arc has beencolliding with the Honshu arc since the middle Miocene. TheKGC includes rocks ranging in compositions from biotite-bearinggranite (the Shosenkyo and Mizugaki plutons), and hornblende–biotite-bearinggranodiorite, tonalite, quartz-diorite, and granite (the Shiodaira,Sanpo, Hirose and Sasago plutons), to hornblende-bearing tonaliteand trondhjemite (the Ashigawa–Tonogi pluton), indicatingthat it was constructed from multiple intrusions of magma withdifferent bulk chemistry. The Sr-isotopic compositions correctedto sensitive high-resolution ion microprobe (SHRIMP) zirconages (SrI) suggest that the primary magmas of each pluton wereformed by anatexis of mixed lower crustal sources involvingboth juvenile basalt of the IBM arc and Shimanto sedimentaryrocks of the Honshu arc. After the primary magmas had formed,the individual plutons evolved by crystal fractionation processeswithout significant crustal assimilation or additional mantlecontribution. SHRIMP zircon U–Pb ages in the KGC rangefrom 16·8 to 10·6 Ma and overlap the resumptionof magmatic activity in the IBM and Honshu arcs at c. 17 Maand the onset of IBM arc–Honshu arc collision at c. 15Ma. The age of the granite plutons is closely related to theepisodic activity of arc magmatism and distinct granitic magmabatches could be formed by lower crustal anatexis induced byintrusion of underplated mantle-derived arc magmas. Based onpressures determined with the Al-in-hornblende geobarometer,the KGC magmas intruded into the middle crust. Thus, the KGCcould represent an example of the middle-crust layer indicatedthroughout the IBM arc by 6·0–6·5 km/s seismicvelocities. This granitic middle-crust layer acted buoyantlyduring the IBM arc–Honshu arc collision, leading to accretionof buoyant IBM arc middle crust to the Honshu arc. KEY WORDS: arc–arc collision; crustal anatexis; granite; Izu–Bonin–Mariana (IBM) arc; Izu Collision Zone  相似文献   

11.
Walegen Au deposit is closely correlated with granitic intrusions of Triassic age, which are composed of granite and quartz porphyries. Both granite porphyry and quartz porphyry consist of quartz, feldspar and muscovite as primary minerals. Weakly peraluminous granite porphyry(A/CNK=1.10–1.15) is enriched in LREE, depleted in HREE with Nb-Ta-Ti anomalies, and displays subduction-related geochemistry. Quartz porphyry is strongly peraluminous(A/CNK=1.64–2.81) with highly evolved components, characterized by lower TiO_2, REE contents, Mg~#, K/Rb, Nb/Ta, Zr/Hf ratios and higher Rb/Sr ratios than the granite porphyry. REE patterns of quartz porphyry exhibit lanthanide tetrad effect, resulting from mineral fractionation or participation of fluids with enriched F and Cl. LAICP-MS zircon U-Pb dating indicates quartz porphyry formed at 233±3 Ma. The ages of relict zircons from Triassic magmatic rocks match well with the detrital zircons from regional area. In addition, ε_(Hf)(t) values of Triassic magmatic zircons from the granite and quartz porphyries are -14.2 to -9.1(with an exception of +4.1) and -10.8 to -8.6 respectively, indicating a crustal-dominant source. Regionally, numerous Middle Triassic granitoids were previously reported to be formed under the consumption of Paleotethyan Ocean. These facts indicate that the granitic porphyries from Walegen Au deposit may have been formed in the processes of the closing of Paleotethyan Ocean, which could correlate with the arc-related magmatism in the Kunlun orogen to the west and the Qinling orogen to the east.  相似文献   

12.
Izu Peninsula in central Japan, the northern tip of the Izu‐Bonin arc, hosts numerous epithermal Au–Ag vein deposits of low‐sulfidation style. All have similar vein textures, mineralogy, and alteration. Geochemical data from fluid inclusions in vein quartz, the mineralogy and mineral chemistry of alteration, and stable isotope data indicate that auriferous hydrothermal activity occurred under subaerial conditions. The K–Ar ages of auriferous vein minerals are <1.5 Ma, indicating that the mineralization took place after extensive submarine volcanism for the host rocks. These observations suggest that Au–Ag mineralization was synchronous with the development of an extensional regime of the Izu block after its collision with the Honshu arc after 1.5 Ma. This collision resulted in the shifting of the Izu block far from the trench to the rear position, and the subduction of the Izu block along the Suruga trough to the west and along the Sagami trough to the east. The reararc position of the Izu block and double subduction resulted in crustal extension, upwelling of asthenospheric mantle, and tholeiitic magmatism reflected by mafic dyke swarms and subsequent monogenetic volcanic activity in the Izu peninsula. The timing of the Au mineralization in the Izu Peninsula during the beginning of lithospheric extension is similar to that of the Sado Au–Ag deposit on Sado island in the Japan Sea. Two mineralization events coincide with extensive tholeiitic mafic volcanism and injections of dyke swarms related to the back‐arc opening of the Japan Sea. The geological setting of the Au–Ag mineralization in Izu and Sado is also similar to that of the epithermal Au–Ag deposits in northern Nevada, where mineralization was contemporaneous with crustal extension and tholeiitic mafic magmatism derived from the asthenospheric mantle. This study suggests that epithermal Au mineralization at shallow crustal depths is a product of large‐scale lithospheric evolution.  相似文献   

13.
This paper describes petrologic and geochemical characteristics of intrusive rocks associated with porphyry copper deposits in south-eastern Mindanao, the Philippines, where the Kingking deposit is located. Intrusive rocks at the Kingking deposit, are classified into biotite-bearing diorite porphyry, hornblende diorite porphyry and diorite porphyry. Intrusive rocks in other areas in south-eastern Mindanao, including Batoto, Bukal, Maragusan, Masara, Amacan and Sumlog, are hornblende diorite porphyry and hornblende quartz diorite. They are adakitic in Sr/Y-Y diagram, but not in La/Yb-Yb diagram due to relatively low REE contents. The magmas are oxidizing as suggested by the high XMg of mafic silicate phenocrysts and SO3 contents of microphenocrystic apatite. An Oligocene-Miocene diorite intrusive complex formed by calc-alkaline, hydrous, oxidizing magma is considered to be associated with porphyry-type copper-gold mineralization.  相似文献   

14.
We studied the systematics of Cl, F and H2O in Izu arc front volcanic rocks using basaltic through rhyolitic glass shards and melt inclusions (Izu glasses) from Oligocene to Quaternary distal fallout tephra. These glasses are low-K basalts to rhyolites that are equivalent to the Quaternary lavas of the Izu arc front (Izu VF). Most of the Izu glasses have Cl ∼400-4000 ppm and F ∼70-400 ppm (normal-group glasses). Rare andesitic melt inclusions (halogen-rich andesites; HRA) have very high abundances of Cl (∼6600-8600 ppm) and F (∼780-910 ppm), but their contents of incompatible large ion lithophile elements (LILE) are similar to the normal-group glasses. The preeruptive H2O of basalt to andesite melt inclusions in plagioclase is estimated to range from ∼2 to ∼10 wt% H2O. The Izu magmas should be undersaturated in H2O and the halogens at their preferred levels of crystallization in the middle to lower crust (∼3 to ∼11 kbar, ∼820° to ∼1200°C). A substantial portion of the original H2O is lost due to degassing during the final ascent to surface. By contrast, halogen loss is minor, except for loss of Cl from siliceous dacitic and rhyolitic compositions. The behavior of Cl, F and H2O in undegassed melts resembles the fluid mobile LILE (e.g.; K, Rb, Cs, Ba, U, Pb, Li). Most of the Cl (>99%), H2O (>95%) and F (>53%) in the Izu VF melts appear to originate from the subducting slab. At arc front depths, the slab fluid contains Cl = 0.94 ± 0.25 wt%, F = 990 ± 270 ppm and H2O = 25 ± 7 wt%. If the subducting sediment and the altered basaltic crust were the only slab sources, then the subducted Cl appears to be almost entirely recycled at the Izu arc (∼77-129%). Conversely, H2O (∼13-22% recycled at arc) and F (∼4-6% recycled) must be either lost during shallow subduction or retained in the slab to greater depths. If a seawater-impregnated serpentinite layer below the basaltic crust were an additional source of Cl and H2O, the calculated percentage of Cl and H2O recycled at arc would be lower. Extrapolating the Izu data to the total length of global arcs (∼37,000 km), the global arc outflux of fluid-recycled Cl and H2O at subduction zones amounts to Cl ∼2.9-3.8 × 1012 g/yr and H2O ∼0.7-1.0 × 1014 g/yr, respectively—comparable to previous estimates. Further, we obtain a first estimate of global arc outflux of fluid-recycled F of ∼0.3-0.4 × 1012g/yr. Despite the inherent uncertainties, our results support models suggesting that the slab becomes strongly depleted in Cl and H2O in subduction zones. In contrast, much of the subducted F appears to be returned to the deep mantle, implying efficient fractionation of Cl and H2O from F during the subduction process. However, if slab devolatilization produces slab fluids with high Cl/F (∼9.5), slab melting will still produce components with low Cl/F ratios (∼0.9), similar to those characteristic of the upper continental crust (Cl/F ∼0.3-0.9).  相似文献   

15.
Manganoan ilmenite with a variable manganese content occurs as an early accessory constituent of granitic rocks in the Ôsumi Peninsula, southern Kyushu. Electron probe micro-analysis of a grain containing highest manganese gives the structural formula (Fe 1.23 2+ Mn 0.81 2+ ) (Ti1.97) O6, if all of the manganese and iron are in the divalent state. The manganese content of manganoan ilmenite increases with an increase of the differentiation index of host rocks, however, the amount of ilmenite tends to decrease with the increase of the same index. The mode of occurrence of the ilmenite suggests that it is the first mafic mineral to precipitate from the magma. The average value of the distribution coefficient of manganese and ferrous iron between ilmenite and granitic magma is 5.5, if the Mn/Fe ratio of the granitic rocks represents that of granitic magma. The variation in the FeO and MnO contents against the differentiation index for granitic rocks of the Ôsumi Peninsula, and the value of the distribution coefficient, show that high manganoan ilmenite is stable in the most differentiated granitic rock of the Ôsumi Peninsula.  相似文献   

16.
Apatites of representative magnetite‐series and ilmenite‐series granitoids were studied in the Japanese Islands. Concentrations of the volatile components F, Cl and SO3 are differently distributed in apatites of these granitoid series. Apatites are always fluoroapatite. They have weakly higher F content in the ilmenite series than in the magnetite series. In contrast, Cl and SO3, are significantly concentrated in apatites of the magnetite series compared to the ilmenite series. These characteristics reflect the original concentrations of these components in the host granitic magmas. A high fO2 seems most important for the S‐concentration as sulfate in apatite of the magnetite series. REE and Y are only erratically high in the studied apatites.  相似文献   

17.
Adakitic rocks and related Cu–Au mineralization are widespread along eastern Jiangnan Orogen in South China. Previous studies have mainly concentrated on those in the Dexing area in northeastern Jiangxi Province, but information is lacking on the genesis and setting of those in northwestern Zhejiang Province. The Jiande copper deposit is located in the suture zone between the Yangtze and Cathaysia blocks of South China. This paper presents systematic LA–ICP–MS zircon U–Pb dating and element and Sr–Nd–Hf isotopic data of the Jiande granodiorite porphyry. Zircon dating showed that the Jiande granodiorite porphyry was produced during the Middle Jurassic (ca. 161 Ma). The Jiande granodiorite porphyry is characterized by adakitic geochemical affinities with high Sr/Y and LaN/YbN ratios but low Y and Yb contents. The absence of a negative Eu anomaly, extreme depletion in Y and Yb, relatively low MgO contents, and relatively high 207Pb/204Pb ratios, indicated that the Jiande granodiorite porphyry was likely derived from partial melting of the thickened lower continental crust. In addition, the Jiande granodiorite porphyry shows arc magma geochemical features (e.g., Nb, Ta and Ti depletion), with bulk Earth‐like εNd (t) values (?2.89 to ?1.92), εHf (t) values (?0.6 to +2.8), and initial 87Sr/86Sr (0.7078 to 0.7105). However, a non‐arc setting in the Middle Jurassic is indicated by the absence of arc rocks and the presence of rifting‐related igneous rock associations in the interior of South China. Combined with the regional Neoproterozoic Jiangnan Orogeny, it indicates that these arc magma geochemical features are possibly inherited from the Neoproterozoic juvenile continental crust formed by the ancient oceanic crust subduction along the Jiangnan Orogen. The geodynamic environment that is responsible for the development of the Middle Jurassic Jiande granodiorite porphyry is likely a localized intra‐continental extensional environment along the NE‐trending Jiangshan‐Shaoxing Deep Fault as a tectonic response to far‐field stress at the margins of the rigid South China Plate during the early stage of the paleo‐Pacific plate subduction. In terms of Cu mineralization, we suggest that the metal Cu was released from the subducted oceanic slab and reserved in the juvenile crust during Neoproterozoic subduction along the eastern Jiangnan Orogen region. Partial melting of the Cu rich Neoproterozoic juvenile crust during the Middle Jurassic time in the Jiande area caused the formation of adakitic rocks and the Cu deposit.  相似文献   

18.
Granitic rocks obtained during field excursions of the famed mineralized regions of the Erzgebirge, Germany (mainly tin‐bearing), and South China (mainly tungsten‐bearing) have been geochemically analyzed and their results are compared with similar (mainly tungsten‐bearing) granites in the island‐arc setting of Southwest Japan. The studied granitoids all belong to the ilmenite‐series. The collision‐related Erzgebirge granitoids are rich in K2O and P2O5, have high A/CNK ratios (1.11–1.24, i.e. S type), but are also high in Ga/Al ratio (i.e., having some A‐type characteristics). In South China, the Xihuashan granites, in contrast, are very low in P2O5, and have A/CNK slightly above 1.0 (1.01–1.05), indicative of I type granites. The (Sn‐) W‐related granites of southwest Japan have similarly low P2O5 and A/CNK ratios, indicative also of I‐type. Both in the Xihuashan and southwest Japan, the tungsten‐related granites have high whole‐rock δ18O values implying involvement of W‐rich crustal rocks. Sn and W contents of the unaltered granites are lowest in the island‐arc setting where the related Sn–W deposits are smallest in size relative to the collision and continental margin settings of the Erzgebirge and South China.  相似文献   

19.
张荣伟  薛传东  薛力鹏  刘星 《岩石学报》2019,35(5):1407-1422
甭哥金矿床位于西南三江造山带北段的义敦弧南缘,属于与富碱侵入岩有关的金矿床。目前,对其成矿机理认识仍较为薄弱,制约了资源评价和找矿勘查进展。本文选取甭哥金矿床强矿化的正长斑岩和弱矿化的黑云辉石正长岩中的磷灰石作为研究对象,详细剖析磷灰石的地球化学特征,探讨其记录的成岩成矿信息。结果表明,磷灰石的稀土元素含量特征及配分模式显示富碱岩浆主要来自于壳幔混合的源区,黑云辉石正长岩中磷灰石的(La/Sm)N、(La/Yb)N、(Sm/Yb)N值和Sr含量呈正相关,说明长石结晶对岩浆结晶分异有重要的影响;正长斑岩中磷灰石具有高Sr/Y、Ce/Pb值,而Th/U、(Sm/Yb)N值较低,指示强烈的流体活动参与了岩浆结晶过程;磷灰石挥发分(F、Cl)含量及比值特征指示金矿成矿流体主要来自地幔源区,成矿与富碱、高氯的成矿流体有关。磷灰石Mn氧逸度计估算结果显示,甭哥富碱侵入岩具有高氧逸度特性,但两种不同岩性岩石的氧逸度具有差异性。其中,正长斑岩的logf_(O_2)值为-12~-10. 3,黑云辉石正长岩的logf_(O_2)值为-15. 5~-11. 1,磷灰石中SO_3含量及Ga含量也暗示正长斑岩的氧逸度高于黑云辉石正长岩的特征;结合磷灰石低Mn、Ga含量和高的Cl、SO_3含量,反映甭哥金矿床金的成矿是在高氧逸度条件下金氯络合物迁移、富集而沉淀的结果。因而,磷灰石的地球化学特征对金矿床成矿过程示踪和勘查评价具有重要的指示意义。  相似文献   

20.
The Early Cretaceous Duolong gold‐rich porphyry copper deposit is a newly discovered deposit with proven 5.38 Mt Cu resources of 0.72% Cu and 41 t gold of 0.23 g t?1 in northern Tibet. Granodiorite porphyry and quartz diorite porphyrite are the main ore‐bearing porphyries. A wide range of hydrothermal alteration associated with these porphyries is divided into potassic, argillic and propylitic zones from the ore‐bearing porphyry center outward and upward. In the hydrothermal alteration zones, secondary albite (91.5–99.7% Ab) occurs along the rim of plagioclase phenocryst and fissures. Secondary K‐feldspar (75.1–96.9% Or) replaces plagioclase phenocryst and matrix or occurs in veinlets. Biotite occurs mainly as matrix and veinlet in addition to phenocryst in the potassic zone. The biotite are Mg‐rich and formed under a highly oxidized condition at temperatures ranging from 400°C to 430°C. All the biotites are absent in F, and have high Cl content (0.19–0.26%), with log (XCl/XOH) values of ?2.74 to ?2.88 and IV (Cl) values of ?3.48 to ?3.35, suggesting a significant role of chloride complexes (CuCl2 and AuCl2) in transporting and precipitating copper and gold. Chlorites are present in all alteration zones and correspond mainly to pycnochlorite. They have similar Fe/(Fe+Mg), Mn/(Mn+Mg) ratios, and a formation temperature range of 280–360°C. However, the formation temperature of chlorite in the quartz‐gypsum‐carbonate‐chlorite vein is between 190°C and 220°C, indicating that it may have resulted from a later stage of hydrothermal activity. Fe3+/Fe2+ ratios of chlorites have negative correlation with AlIV, suggesting oxygen fugacity of fluids increases with decreasing temperature. Apatite mineral inclusions in the biotite phenocrysts show high SO3 content (0.44–0.82%) and high Cl content (1–1.37%), indicating the host magma had a high oxidation state and was enriched in S and Cl. The highest Cl content of apatite in the propylitic zone may have resulted from pressure decrease, and the lowest Cl content of apatite in the argillic zone may have been caused by a low Cl content in the fluids. The low concentration of SO3 content in the hydrothermal apatite compared to the magmatic one may have resulted from the decrease of oxygen fugacity and S content in the hydrothermal fluid, which are caused by the abundant precipitation of magnetite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号