首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
An Overview of Long-Term Trends in the Lower Ionosphere Below 120 km   总被引:2,自引:0,他引:2  
The increasing concentration of greenhouse gases in the atmosphere is expectedalso to modify the mesosphere and lower thermosphere (MLT region). However,the greenhouse cooling – instead of heating – at these heights is revealed by modelsand generally confirmed by observations. This should more or less affect variousionospheric parameters at these heights. The spatial and temporal structure oftemperature trends in the MLT region is quite complex and, therefore, such structureshould occur for trends in the lower ionosphere as well. In the lower part of theionosphere below about 90 km, the rocket measurements of electron density, theindirect phase reflection height measurements and the A3 radio wave absorptionmeasurements reveal trends corresponding to cooling and shrinking of the mesosphere,while riometric measurements of cosmic noise absorption provide inconclusive results.The radio wave absorption and rocket electron density measurements clearly display asubstantial dependence of trends on height. Ionosonde data show that there is amodel-expected trend in the maximum electron concentration of the E region ionosphere;foE is slightly increasing. On the other hand, the height of the normal E layer, h'E, isslightly decreasing. The nighttime LF radio wave reflection height measurements near95 km support an idea of increasing electron density. However, rather scarce rocketmeasurements display a negative trend in electron density at 90–120 km. The role ofthe solar cycle and other longer-term variability of natural origin in the determinationof observational trends must not be neglected. In spite of the general qualitativeagreement with model expectations, there is still some controversy between variousobservational trend results (hopefully, apparent rather than real), which needs to beclarified.  相似文献   

2.
As predicted by model calculations, long-term changes in the stratospheric ozone content should influence trends in the meso- and thermosphere also. These predictions have been tested by means of ionospheric reflection height data in the low-frequency (LF) range and critical frequency data series of the ionospheric E layer, foE, observed at different stations around the world. It was shown that an essential part of the derived trends in the mesosphere and in the lower thermosphere is correlated with long-term changes of the atmospheric ozone content. During the sub-interval with the strongest ozone decrease (1979–1995) the detected ionospheric trends are most pronounced. Additionally was also demonstrated that the longitudinally dependent ozone trends are related to similar variations in the foE trends.  相似文献   

3.
We have studied the temperature response to changes in the CO2 concentration in the middle and upper atmosphere using the Coupled Middle Atmosphere–Thermosphere Model 2 (CMAT2). We have performed simulations with a range of CO2 concentrations and three different ways of accounting for the effects of gravity waves, to allow for comparison with previous studies and sensitivity analyses. We initially find that the response of the model to the changes in CO2 concentration which took place between 1965 and 1995 (320–360 ppm) is strongly dependent on the gravity wave parameterization that is used, but this is to a large degree due to steps or kinks in an otherwise nearly linear curve describing the temperature as a function of CO2 concentration. We have not been able to identify the cause of these steps as part of the present study, which is a limitation and must be studied in future work. Here we treated the steps as model noise and rather focused on correcting for their effects by fitting straight lines to the temperature–CO2 curves to estimate the overall slope of the curves. From these slopes we were able to obtain more robust trend estimates than can be obtained by comparing only two model simulations, as is normally done in other, similar studies. The corrected temperature responses to a 40 ppm change in CO2 concentration still show up to 15–17% sensitivity to the gravity wave parameterization in the mesosphere and thermosphere. This remaining sensitivity is likely to be related to the fundamental differences in the way a change in temperature modifies the propagation and dissipation characteristics of gravity waves in each parameterization, which is particularly different for linear and non-linear schemes. The corrected trends we find are largely in agreement with other modelling studies, and therefore do not fully explain observed trends, which are typically larger than those predicted by modelling studies. However, modelling results could be similarly sensitive to other model parameters and settings, for example to gravity wave characteristics or solar activity level, and this should be further investigated as well.  相似文献   

4.
The global pattern of long-term trends and changes in the upper atmosphere and ionosphere has been presented by Laštovička et al. [2006a. Global change in the upper atmosphere. Science 314 (5803), 1253–1254]. Trends in the mesospheric temperature, electron concentration in the lower ionosphere, electron concentration and height of its maximum in the E-region, electron concentration in the F1-region maximum, thermospheric neutral density and F-region ion temperature qualitatively agree with consequences of the enhanced greenhouse effect and form a consistent pattern of global change in the upper atmosphere. Three groups of parameters were identified as not-fitting this global pattern, the F2-region ionosphere, mesospheric water vapour, and the mesosphere/upper thermosphere dynamics. The paper reports progress in development of the global pattern of trends with emphasis to these three open problems. There are several other factors contributing to long-term trends, namely the stratospheric ozone depletion, mesospheric water vapour concentration changes, long-term changes of geomagnetic activity and of the Earth's magnetic field.  相似文献   

5.
Long-term changes of the temperature of the middle atmosphere are investigated using a data bank obtained by Russian rocketsondes at Heiss Island (80.6°N, 58°E). The major interest of the data series is that it is one of the longest and uninterrupted records obtained at high latitudes in the northern hemisphere over 25 years, from 1969 to 1994. Previous estimates using this dataset has shown the largest trends. The revised analysis performed here took into account all possible discontinuities in the data series, such as a change in the time-of-measurement, T0, and in the type of sensor. For this purpose, some data were filtered out, and a statistical model based on multiple regression analyses included step functions to take into account such discontinuities. The temperature responses to different sources of variability (solar activity, volcanic aerosols) were retrieved for summer and winter periods. The response to the 11-year solar cycle in the winter period is found to be largely positive in the stratosphere (∼+4 K) and largely negative in the mesosphere (∼−8 K), with a smaller and opposite response in summer. This response depends on the phase of the QBO, as already shown by previous studies. The response to volcanic aerosols is found to be significantly positive in the upper mesosphere, in good agreement with numerical simulations and with observations above France. The long-term trend resulting from this reanalysis indicates a cooling of the middle atmosphere, increasing with altitude from −2 K/decade at 40 km to a maximum of −6 K/decade around 65 km. This result is slightly larger than the trend observed at mid-latitude but quite smaller than previous estimates.  相似文献   

6.
A new parameterization of infrared radiative transfer in the 15-m CO2 band has been incorporated into the Spectral mesosphere/lower thermosphere model (SMLTM). The parameterization is applicable to calculations of heating rates above approximately 15 km for arbitrary vertical profiles of the CO2 concentration corresponding to the surface mixing ratio in the range 150–720 ppm. The sensitivity of the mesosphere and lower thermosphere (MLT) to doubling of CO2 has been studied. The thermal response in the MLT is mostly negative (cooling) and much stronger than in the lower atmosphere. An average cooling at the stratopause is about 14 K. It gradually decreases to approximately 8 K in the upper mesosphere and again increases to about 40–50 K in the thermosphere. The cooling and associated thermal shrinking result in a substantial density reduction in the MLT that reaches 40–45% in the thermosphere. Various radiative, chemical, and dynamical feedbacks potentially important for the thermal response in the MLT are discussed. It is noted that the results of simulations are strikingly similar to observations of long-term trends in the MLT. This suggests that during the last 3–4 decades the thermal structure in the real upper atmosphere has undergone substantial changes driven by forcing comparable with that due to doubling of CO2.  相似文献   

7.
Strong VHF radar echoes have been observed not only during summer months at polar latitudes (polar mesosphere summer echoes, PMSE) but also at middle latitudes (mesosphere summer echoes, MSE). These echoes are closely connected with small ice particles, thus containing information about mesospheric temperature and water vapour content. But the (P)MSE also depend on the ionisation due to solar wave radiation and precipitating high energetic particles. Observations with VHF radars at Andenes (69.3°N; 16.0°E) since 1994 and at Kühlungsborn (54.6°N; 11.8°E) since 1998 are used for investigations of the solar and geomagnetic control of the (P)MSE as well as of possible long-term changes. The (P)MSE are positively correlated with the solar Lyman α radiation and the geomagnetic activity and have slightly positive trends. Due to the limited measuring period, the significance levels of the detected (P)MSE trends are small. Positive trends in noctilucent clouds (NLC) and polar mesospheric clouds (PMC) are in general agreement with (P)MSE trends.  相似文献   

8.
Studies on the influence of solar activity in 11-year cycle on middle atmospheric thermodynamic parameters, such as temperature, pressure and density, and zonal and meridional wind components over three meteorological rocket launching stations, located in the tropics (Thumba), mid-latitude (Volgograd) and high-latitude (Heiss Island) regions of the northern hemisphere have been carried out. The temperature in all the three regions showed a negative response in the stratosphere and positive association in the mesosphere with the changes in solar activity. The temperature decreases by 2-3% from its mean value in the stratosphere and increases by 4-6% in the mesosphere for an increase in 100 units of solar radio flux. Atmospheric pressure is found to be more sensitive to solar changes. An average solar maximum condition enhances the pressure in the stratosphere by 5% and in the upper mesosphere by 16-18% compared to the respective mean values. Density also showed strong association with the changes in solar activity. Increase in the solar radio flux tends to strengthen winter westerlies in the upper stratosphere over the mid-latitude and summer easterlies in the middle stratosphere over tropics. Larger variability in the zonal wind is noted near stratopause height. Results obtained from the study indicate that there is an external force exerted on the Earth’s atmosphere during the period of high solar activity. These results can be incorporated for further studies on the dynamics of the middle atmosphere in association with the changes in solar activity.  相似文献   

9.
VHF Radar echoes in the summer mesosphere at mid- and polar latitudes ([P]MSE—[polar] mesosphere summer echoes) are connected with very cold temperatures where ice particles can exist. Temperature variations can cause conditions for the generation and evaporation of ice particles and affect the [P]MSE occurrence. The impact of temperature and meridional wind oscillations on [P]MSE is described. Generally at mid-latitudes, strong mesosphere summer echoes are strongly affected by meridional wind variations if the mean temperature is near the frost point of water vapor. In contrast, at polar latitudes there is mostly no significant impact of the meridional wind on radar echoes. A mean temperature well below the frost point and a weaker meridional temperature gradient than at mid-latitudes are reasons for this reduced influence. Due to higher temperatures in 2002, long period temperature and meridional wind variations impact the PMSE more than during the other years.  相似文献   

10.
A global numerical weather prediction system is extended to the mesosphere and lower thermosphere (MLT) and used to assimilate high-altitude satellite measurements of temperature, water vapor and ozone from MLS and SABER during May–July 2007. Assimilated temperature and humidity from 100 to 0.001 hPa show minimal biases compared to satellite data and existing analysis fields. Saturation ratios derived diagnostically from these assimilated temperature and water vapor fields at PMC altitudes and latitudes compare well with seasonal variations in PMC frequency measured from the aeronomy of ice in the mesosphere (AIM) satellite. Synoptic maps of these diagnostic saturation ratios correlate geographically with three independent transient mesospheric cloud events observed at midlatitudes by SHIMMER on STPSat-1 and by ground observers during June 2007. Assimilated temperatures and winds reveal broadly realistic amplitudes of the quasi 5-day wave and migrating tides as a function of latitude and height. For example, analyzed winds capture the dominant semidiurnal MLT wind patterns at 55°N in June 2007 measured independently by a meteor radar. The 5-day wave and migrating diurnal tide also modulate water vapor mixing ratios in the polar summer MLT. Possible origins of this variability are discussed.  相似文献   

11.
A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32’ N, 76 52’ E), located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME) satellite data. Temperature variability at every 1 km interval in the 25–75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.  相似文献   

12.
13.
Diurnal variations in the vertical ozone density distribution have been calculated for the height range 40–150 km by extending our existing computer programs. The steady-state profiles were first calculated for fifteen constituents in the original program and three additional constituents (CH4, CO and CO2); the result was used as the initial condition for the time-dependent solution. The profile of the eddy diffusion coefficient used in this study was determined by comparing the model profile with the observations for CH4, whose density distribution is verysenstive to the eddy diffusion coefficient The effects of hydrogen and nitrogen compounds on the ozone density are discussed somewhat quantitatively; they reduce the ozone density mainly in the mesosphere and stratosphere, respectively. Special attention is given to the large depression of the ozone density at around 70–85 km, which has been obtained in many theoretical models but has neither been explained nor definitely confirmed by observations. Our time-dependent model indicates that the depression develops at night by the effect of hydrogen-oxygen and nitrogen-oxygen reactions and of eddy diffusion transports. The latter effect also produces an increase of the ozone density after midnight at some heights in the depression region.  相似文献   

14.
OH气辉对重力波响应的模式研究   总被引:1,自引:1,他引:0       下载免费PDF全文
重力波是中间层大气的重要能量来源,气辉观测为研究中间层重力波特性提供了极好的方法。本文利用最新的 OH 气辉激发机制,建立了一个较完整的光化、动力模式来分析重力波传播对 OH 气辉的影响。结果表明,化学反应速率系数不定性对 Krassovsky 比振幅的影响较小,但淬灭过程的影响必须考虑。Krassovsky 比的振幅和相位均依赖于波周期,其振幅在2.1和10.3之间变化;这表明 OH 气辉亮度的相对变化大于温度的相对变化。一般情况下,重力波引起的温度扰动超前于气辉亮度的变化。与实测资料比较发现,两者变化趋势基本一致,在短周期波时吻合较好。  相似文献   

15.
The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp = 8+). A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Paper Presented at the Second IAGA/ICMA (IAMAS) Workshop on Solar Activity Forcing of the Middle Atmosphere, Prague, August 1997  相似文献   

16.
Bremer and Berger (J. Atmos. Solar Terr. Phys. 64 (2002) 805) applied a correction for trends in the NO concentration and αeff in the interpretation of trends in the low frequency (LF) phase height measurements and obtained results less consistent with model simulations as well as the observed trends in mesospheric temperatures. The correction is shown to be too large most probably due to the application of inappropriate trends in αeff of Chakrabarty (Adv. Space Res. 20 (1997) 2117), which yield a trend in electron density opposite to that which is observed. The discrepancy between the observational data and model-simulated trends of Bremer and Berger (J. Atoms. Solar. Terr. Phys. 64 (2002) 805) in the LF phase heights can be largely removed. Even more important, the trends in mesospheric temperatures inferred by Bremer and Berger (J. Atmos. Solar Terr. Phys. 64 (2002) 805) from trends in the LF phase heights without the inappropriate correction agree well with the results of analysis of a global set of results on trends in the mesospheric temperatures by Beig et al. (Rev. Geophys. 41 (2003) 1015).  相似文献   

17.
Wind and temperature observations in the mesosphere and lower thermosphere (MLT) from the Upper Atmosphere Research Satellite (UARS) reveal strong seasonal variations of tides, a dominant component of the MLT dynamics. Simulations with the Spectral mesosphere/lower thermosphere model (SMLTM) for equinox and solstice conditions are presented and compared with the observations. The diurnal tide is generated by forcing specified at the model lower boundary and by in situ absorption of solar radiation. The model incorporates realistic parameter-izations of physical processes including various dissipation processes important for propagation of tidal waves in the MLT. A discrete multi-component gravity-wave parameterization has been modified to account for seasonal variations of the background temperature. Eddy diffusion is calculated depending on the gravitywave energy deposition rate and stability of the background flow. It is shown that seasonal variations of the diurnal-tide amplitudes are consistent with observed variations of gravity-wave sources in the lower atmosphere.  相似文献   

18.
Trends in extreme temperature indices in the Poyang Lake Basin,China   总被引:4,自引:3,他引:1  
Based on daily maximum and minimum temperature records at 78 meteorological stations in the Basin of China’s largest fresh water lake (Poyang Lake Basin), the temporal and spatial variability of 11 extreme temperature indices are investigated for the period 1959–2010. The analysis indicates that the annual mean of daily minimum temperature (Tmin) has increased significantly, while no significant trends were observed in the annual mean of daily maximum temperature (Tmax), resulting in a significant decrease in the diurnal temperature range. Trends and percentages of stations with significant trends in Tmin-related indices are generally stronger and higher than those in Tmax-related indices; however, no significant trends can be found in Tmax-related indices (TXMean, TX90p, TXx and TX10p) at both seasonal and annual time scale. Low correlations with Global-SST ENSO index are also detected in Tmax-related indices. Significant positive relationships can be found in Tmin-related indices (TNMean, TNx, TNn and TN90p), however, the most significant negative coefficient was also found in cold nights (TN10p) with the Global-SST ENSO index. Singular value decomposition (SVD) correlating extreme temperatures over the Poyang Lake Basin and the North Pacific SST indicates the East China Sea, Western Pacific and Bering Sea to be stronger linked with Tmin than Tmax with the first mode (SVD-1) explaining 90 and 94 % of annual Tmax and Tmin respectively.  相似文献   

19.
The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters.  相似文献   

20.
This is a study of the negative ion chemistry in the mesosphere above Tromsø using a number of EISCAT observations of high energy proton precipitation events during the last solar maximum, and in particular around sunset on 23 October, 1989. In these conditions it is possible to look at the relative importance of the various photodetachment and photodissociation processes controlling the concentration of negative ions. The data analysed are from several UHF GEN11 determinations of the ion-plasma ACF together with the pseudo zero-lag estimate of the ‘raw’ electron density, at heights between 55 km and 85 km, at less than 1 km resolution. The power profiles from the UHF are combined with the 55-ion Sodankylä model to obtain consistent estimates of the electron density, the negative ion concentrations, and the average ion mass with height. The neutral concentrations and ion temperature are given by the MSIS90 model. These parameters are then used to compare the calculated widths of the ion-line with the GEN11 determinations. The ion-line spectrum gives information on the effects of negative ions below 70 km where they are dominant; the spectral width is almost a direct measure of the relative abundance of negative ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号