首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work solar wind measurements from several spacecraft were used to investigate the correlations of solar wind plasma parameters. These results provide a test of the concept of predicting space weather by monitoring the condition of the solar wind at a large distance (up to 230Re, the L1 point) upstream from the Earth.We compared the ion flux and bulk velocity time behavior measured by widely-separated spacecraft: the spacecraft pairs INTERBALL-1 and IMP 8 (separations up to 30Re), INTERBALL-1 and WIND, and IMP 8 and WIND (both with separations up to 250Re). The average value of the ion flux correlation coefficient is about 0.73. But in some cases the plasma parameters from two spacecraft are very different in both behavior and value, so correlations are very poor.The technique of multifactorial analysis was used to obtain the physical dependences of the correlations on the spacecraft separation and on different plasma and magnetic field parameters. We found that the correlation values have a weak but significant dependence on the separation perpendicular to the Sun–Earth line (YZse-separations up to 90Re).The most important factors influencing the correlation level are density (or ion flux) variability, the direction of the IMF vector to the Sun–Earth line (cone angle), and the solar wind bulk velocity.  相似文献   

2.
Compressible fluctuations in solar wind plasma are analyzed on the basis of the 1995–2010 WIND and Advanced Composition Explorer (ACE) spacecraft data. In the low-speed solar wind (V 0 < 430 km/s), correlations between fluctuations in the magnetic field direction and plasma density, as well as between velocity fluctuations and plasma density, are found. The covariance functions of these parameters calculated as functions of the local magnetic field direction are axially symmetric relative to the axis, which is oriented nearly along the regular magnetic field of the heliosphere (the Parker spiral). Fluctuations in the magnetic field and velocity are polarized in the plane that is orthogonal to the axis of symmetry. Plasma oscillations of these properties can be caused by fast magnetosonic waves propagating from the Sun along the Parker spiral.  相似文献   

3.
The general features of the region of interaction of the solar wind with the ionosphere of Venus and Mars are compared using data obtained with the Mariner 5 and the Pioneer Venus Orbiter (PVO) spacecraft for Venus and with the Phobos II, the Mars Global Surveyor (MGS) and the Mars Express spacecraft for Mars. Despite the overall weak intrinsic global magnetic field that is present in both planets there are significant differences in the manner in which the interplanetary magnetic field accumulates and is organized around and within their ionosphere. Such differences are unrelated to the crustal magnetic field remnants inferred from the MGS measurements around Mars. In fact, while in Venus and Mars there is a region in which the magnetic field becomes enhanced as it piles up in their plasma environment it is shown that such a region exhibits different regimes with respect to changes in the ion composition measured outside and within the ionosphere. At Venus the region of enhanced magnetic field intensity occurs in general above the ionopause which represents the boundary across which there is a change in the ion composition with dominant solar wind protons above and planetary O+ ions below. At Mars the region of enhanced magnetic field is located below a magnetic pileup boundary across which there is also a comparable change in the ion composition (solar wind protons above and planetary O+ ions below). It is argued that this difference in the relative position of the region of enhanced magnetic field with respect to that of a plasma boundary that separates different ion populations results from the peculiar response of the ionosphere of each planet to the oncoming solar wind dynamic pressure. While at Venus the peak ionospheric thermal pressure is in general sufficient to withhold the incident solar wind kinetic pressure there is a different response in Mars where the peak ionospheric thermal pressure is in general not large enough to deviate the solar wind. In this latter case the ionosphere is unable to force the solar wind to move around the ionosphere and as a result the oncoming electron population can reach low altitudes where it is influenced by neutral atmospheric particles (the solar wind proton population is replaced at the magnetic pileup boundary which marks the upper extent of the region where the interplanetary magnetic field becomes enhanced). Peculiar conditions are expected near the magnetic polar regions and over the terminator plane where the solar wind is directed along the sides of the planet.  相似文献   

4.
In this paper, the correlation coefficient between the ion fluxes in the solar wind and the magnetosheath is analyzed with the use of data of two satellites of the THEMIS mission and the THEMIS/Spektr-R satellites obtained in 2008 and 2011?2014, respectively. We have distinguished the conditions in which a high level of correlation between the measurements in the solar wind and the magnetosheath is observed, i.e., the correlation coefficient exceeds 0.7. As key factors, we consider both direct parameters of the solar wind, such as the density, the magnetic field magnitude, the magnetosonic Mach number, and the ratio β of the thermal pressure to the magnetic, and a more general factor—the type of large-scale structure of the solar wind. In addition, the effect of the satellite location in the magnetosheath relative to its boundaries—the bow shock and the magnetopause—on the correlation level is considered. It has been shown that, in roughly one third of cases, the plasma structures of the solar wind undergo a strong modification at the bow shock and in the magnetosheath, which results in a low correlation level corresponding to a correlation coefficient of less than 0.5; a high correlation level is observed in half of cases, i.e., the plasma structures are weakly disturbed. It has been determined that (1) the low correlation level in the magnetosheath behind quasi-perpendicular bow shock is more often observed near the magnetopause than in region just behind the bow shock, (2) the probability of observations of a high correlation level is independent of the profile shape of the quasi-perpendicular bow shock, and (3) the high correlation is more probable for the events corresponding to the solar wind of the Corotating Interaction Region (CIR) type than for those with the other solar wind types observed in the considered period.  相似文献   

5.
Disturbances in the solar wind density, geomagnetic field, and magnetospheric plasma density and fluxes are analyzed. The disturbances have the same sign and are close to each other in time. They accompany the process of amplitude modulation of Pc1 geomagnetic pulsations during the recovery phase of the moderate magnetic storm of April 10–11, 1997. The magnetospheric disturbances were recorded by ground-based observatories and on spacecraft in all local time sectors with insignificant time delays. It is concluded that in this case variations in the geomagnetic field and magnetospheric plasma density are primary, whereas the amplitude modulation of Pc1, 2 is a secondary manifestation of fast magnetosonic (FMS) waves that are generated during the interaction between the magnetosphere and solar wind density irregularities.  相似文献   

6.
Downward precipitating ions in the cusp regularly exhibit sudden changes in ion energy distributions, forming distinctive structures that can be used to study the temporal/spatial nature of reconnection at the magnetopause. When observed simultaneously with the Polar, FAST, and Interball satellites, such cusp structures revealed remarkably similar features. These similar features could be observed for up to several hours during stable solar wind conditions. Their similarities led to the conclusion that large-scale cusp structures are spatial structures related to global ionospheric convection patterns created by magnetic merging and not the result of temporal variations in reconnection parameters. The launch of the Cluster fleet allows cusp structures to be studied in great detail and during changing solar wind conditions using three spacecraft with identical plasma and field instrumentation. In addition, Cluster cusp measurements are linked with ionospheric convection cells by combining the satellite observations with SuperDARN radar observations that are used to derive the convection patterns in the ionosphere. The combination of satellite observations with ground-based observations during variable solar wind conditions shows that large-scale cusp structures can be either spatial or temporal. Cusp structures can be described as spatial features observed by satellites crossing into spatially separated flux tubes. Cusp structures can also be observed as poleward-traveling (temporal) features within the same convection cell, most probably caused by variations in the reconnection rate at the magnetopause.  相似文献   

7.
We compare numerical results obtained from a steady-state MHD model of solar wind flow past the terrestrial magnetosphere with documented observations made by the AMPTE/IRM spacecraft on 24 October, 1985, during an inbound crossing of the magnetosheath. Observations indicate that steady conditions prevailed during this about 4 hour-long crossing. The magnetic shear at spacecraft entry into the magnetosphere was 15°. A steady density decrease and a concomitant magnetic field pile-up were observed during the 40 min interval just preceding the magnetopause crossing. In this plasma depletion layer (1) the plasma beta dropped to values below unity; (2) the flow speed tangential to the magnetopause was enhanced; and (3) the local magnetic field and velocity vectors became increasingly more orthogonal to each other as the magnetopause was approached (Phan et al., 1994). We model parameter variations along a spacecraft orbit approximating that of AMPTE/IRM, which was at slightly southern GSE latitudes and about 1.5 h postnoon Local Time. We model the magnetopause as a tangential discontinuity, as suggested by the observations, and take as input solar wind parameters those measured by AMPTE/IRM just prior to its bow shock crossing. We find that computed field and plasma profiles across the magnetosheath and plasma depletion layer match all observations closely. Theoretical predictions on stagnation line flow near this low-shear magnetopause are confirmed by the experimental findings. Our theory does not give, and the data on this pass do not show, any localized density enhancements in the inner magnetosheath region just outside the plasma depletion layer.  相似文献   

8.
In situ measurements of the solar wind largely cover more than two solar magnetic activity cycles, namely 20 and 21. This is a very appealing opportunity to study the influence of the activity cycle on the behaviour of the solar wind parameters. As a matter of fact, many authors so far have studied this topic comparing the long-term magnetic field and plasma averages. However, when the average values are evaluated on a data sample whose duration is comparable with (or even longer than) the solar rotation period we lose information about the contribution due to the fast and the slow solar wind components. Thus, discriminating in velocity plays a key role in understanding solar cycle effects on the solar wind. Based on these considerations, we performed a separate analysis for fast and slow wind, respectively. In particular, we found that: (a) fast wind carries a slightly larger momentum flux density at 1 AU, probably due to dynamic stream-stream interaction; (b) proton number density in slow wind is more cycle dependent than in fast wind and decreases remarkably across solar maximum; (c) fast wind generally carries a magnetic field intensity stronger than that carried by the slow wind; (d) we found no evidence for a positive correlation between velocity and field intensity as predicted by some theories of solar wind acceleration; (e) our results would support an approximately constant divergence of field lines associated with corotating high-velocity streams.  相似文献   

9.
行星际扰动和地磁活动对GEO相对论电子影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1988—2010年小时平均的GOES卫星数据,对地球同步轨道(GEO)相对论电子变化进行了统计分析,研究了相对论电子通量(Fe)增强事件的发展过程,探讨了利于相对论电子通量增强的太阳风和地磁活动条件.主要结论如下:(1)GEO相对论电子通量即使是峰值,也具有明显的地方时特性,最大电子通量出现在磁正午时.午/夜电子通量比率随着太阳风速度(Vsw)增加而增大;在Dst-50nT时相对论电子具有规则的地方时变化.在太阳活动下降相,电子通量与各参数的相关性较好,与其相关性最好的Vsw、Kp指数以及三次根号下的太阳风密度(N)分别出现在电子通量前39~57h、57~80h和12~24h.(2)强(日平均电子通量峰值Femax≥104 pfu)相对论电子事件,在距离太阳活动谷年前两年左右和春秋分期间发生率最高,较弱(104Femax≥103 pfu)事件无此特点;大部分强相对论电子事件中,电子通量在磁暴主相开始增加,较弱事件中则在恢复相开始回升.(3)太阳风密度变化对相对论电子事件的发展具有重要指示作用.电子通量在太阳风密度极大值后0~1天达到极小值,太阳风密度极小值后0~2天达到极大值.(4)90%以上相对论电子事件是在磁暴及高速太阳风的条件下发生的,与其伴随的行星际参数和地磁活动指数极值满足以下条件:Vswmax516km/s,Dstmin-31nT,Nmin2.8cm-3,Nmax14.1cm-3,Bzmin-2.9nT,AEmax698nT.(5)磁暴过程中,Dstmin后日平均电子通量大于103 pfu的发生概率为53%左右,强/弱相对论电子事件占总数比例分别为36%/64%左右,磁暴强度对其无影响.磁暴过程中的Vsw、N和AE指数大小对于能否引起相对论电子增强起着指示作用.  相似文献   

10.
The behavior of correlation tensors of fluctuations in the solar wind magnetic field and velocity is studied during different phases of a solar cycle on the basis of a 45-year measurement series of solar wind parameters. It is found that the orientation of fluctuations in the magnetic field and velocity is approximately axisymmetric relative to the direction of a local magnetic field during high solar activity. This symmetry is violated significantly during periods of low solar activity, and deviations from the symmetry are regular and oppositely directed during minima of even and odd 11-year cycles, which is probably connected with variations in the orientation of the Sun??s magnetic field. The dependence of the power of fluctuations on the local magnetic field direction reveals significant deviations from local symmetry during all phases of a solar cycle, especially for velocity fluctuations.  相似文献   

11.
Geomagnetic disturbances in the Canadian region are compared with their solar and heliospheric sources during the decline phase of solar activity, when recurrent solar wind streams from low-latitude coronal holes were clearly defined. A linear correlation analysis has been performed using the following data: the daily and hourly indices of geomagnetic activity, solar wind velocity, and coronal hole area. The obtained correlation coefficients were rather low between the coronal hole areas and geomagnetic activity (0.17–0.48), intermediate between the coronal hole areas and the solar wind velocity (0.40–0.65), and rather high between the solar wind velocity and geomagnetic activity (0.50–0.70). It has been indicated that the correlation coefficient values can be considerably increased (by tens of percent in the first case and about twice in the second case) if variations in the studied parameters related to changes in the ionosphere (different illumination during a year) and variations in the heliolatitudinal shift of the coordinate system between the Earth, the Sun, and a spacecraft are more accurately taken into account.  相似文献   

12.
采用GOES9卫星观测的能量大于2MeV和大于4MeV电子通量和行星际飞船ACE太阳风参数的高时间分辨率资料,以及磁暴指数Dst资料,分析了1998年4-5月期间地球同步轨道电子通量增强事件的时间和能量响应特征及其与行星际太阳风参数、磁暴和亚暴等扰动条件的对应关系.结果表明,地球同步轨道相对论性(MeV)电子通量增强事件有明显的周日变化,中午极大和午夜极小.4月22日和5月5日开始的两次大事件中,能量大于2MeV电子通量中午极大值上升到最大值的时间尺度分别约为4天和1天,中午极大值高于背景水平的持续时间分别为13天(4月22日-5月4日)和16天(5月4日-20日)以上.每次MeV电子通量增强事件的能量范围不完全相同.两次大事件的上升段都对应于磁暴的恢复相,与太阳风动压脉冲、高速流脉冲和负Bz分量关系密切.  相似文献   

13.
Ulysses的观测与太阳风加速机理初议   总被引:2,自引:0,他引:2       下载免费PDF全文
Ulysses 是迄今为止第一次沿独特的日球纬度方向考察日球高纬度空间区域的飞船。本文描述了 Ulysses 飞船的部分主要观测结果,并进行了分析,在 Ulysses 飞船穿越太阳南,北极之前,科学家们提出了各种不同的太阳风速度、磁场等参量的纬向变化模型。分析表明,这些模型都不能解释 Ulysses 飞船的观测结果。Ulysses 飞船的观测对经典的太阳风理论提出了挑战,太阳风的加热与加速是一个远没有被解决的问题。观测与分析表明,经典热传导不可能驱动高速流,太阳风的加速伴随着加热的发生,而加热率大小可能与离子的回旋频率有关;太阳风的热源可能不是单一的形式,而且不同形式的热源对太阳的加热贡献大小与日球径向距离有关。本文讨论并分析了几种可能的太阳风加热与加速机制。  相似文献   

14.
When the effect of a solar wind dynamic pressure pulse on the magnetospheric and ionospheric dynamics is studied, it is usually difficult to detect the effect of a sudden change in the density against the background of the other varying solar wind parameters, which often play a most pronounced role. Cases in which the solar wind plasma density gradient dominated in the dynamics of the different parameters of an interplanetary medium and its magnetic field are considered in this work. Variations in the Earth’s dayside magnetopause current caused by a change in the solar wind ion density are presented for two such cases (February 11 and January 11, 1997) based on the method developed by us previously. Variations in the dayside magnetopause current for collisions of the magnetosphere with corotating interacting flows in January 2004, studied in detail by us previously, are also presented for Saturn. The estimates are comparable with the current values in the transitional three-dimensional current systems of Saturn that were previously calculated by us.  相似文献   

15.
The artificial neural network technique is applied to dividing discontinuities in space plasma and magnetic field parameters into classes corresponding to known types of magnetohydrodynamic discontinuities. Parameter discontinuities registered on the WIND spacecraft between 1996 and 1999 are classified using a network of the Kohonen Layer type. An algorithm for determining the orientation of discontinuity surfaces on the basis of one-dimensional observations of solar wind parameter discontinuities on board spacecraft is proposed.  相似文献   

16.
One way to investigate the magnetosphere–ionosphere coupling is through the simultaneous observation of different parameters measured at different locations of the geospace environment and try to determine some relationships among them. The main objective of this work is to examine how the solar energetic particles and the interplanetary medium conditions may affect the space and time configuration of the ring current at low-latitudes and also to get a better understanding on how these particles interfere with the lower ionosphere in the South Atlantic Magnetic Anomaly region (SAMA). To accomplish this, the cosmic noise absorption (CNA) and the horizontal component of the Earth's magnetic field data measured from sites located in the SAMA region were compared with the proton and electron fluxes, interplanetary medium conditions (solar wind and the north–south component of the interplanetary magnetic field measured on board satellites), the SYM-H index and magnetometer data from Kakioka (KAK-Japan), located significantly outside the SAMA region. The time series analyzed correspond to the geomagnetic disturbance that occurred on August 25–30, 1998. The analysis was performed by implementing wavelet techniques, with particular attention to singularities detection, which highlights the presence of transient signals. The results are discussed in terms of the first three wavelet decomposition levels of the parameters. The magnitude of wavelet coefficients of the solar wind and proton flux at the two energy ranges analyzed is timely well correlated, indicating that these two signals are energetically linked. The larger wavelet coefficient amplitude of KAK and VSS magnetograms shows time delays that are compatible with an asymmetric configuration of the ring current, considering that at the storm time, VSS was at the dawn sector of the magnetosphere and KAK at the dusk side. The wavelet analysis of CNA signals reveals that the signal may be sensitive to the ionization produced by energetic electrons and protons as well. The time delays observed in wavelet coefficients may give an indication of the different accelerating process to which the particles are submitted when traveling along the magnetic field lines, from higher to lower latitudes, and the likely contribution of these particles to the ionization measured as an absorption of the cosmic noise in the lower ionosphere.  相似文献   

17.
南向行星际磁场事件与磁暴关系的研究   总被引:5,自引:5,他引:5       下载免费PDF全文
利用172-182年IMP-8飞船的太阳风观测资料和相应地磁活动性指数Dst和AE,研究了43个南向行星际磁场事件期间太阳风和磁层的耦合问题. 与这43个事件对应的地磁暴是中等的和强的磁暴(Dst<-50nT). 结果表明:(1) 在43个事件中有11个(约占25.6髎)紧随激波之后,18个处于激波下游流场中(占42髎),其余14个(占33髎)和激波没有关连. 绝大多数事件都伴有太阳风动压和总磁场强度的增加;(2) 当行星际晨昏向电场强度EI>-4mV/m时,只引起磁亚暴,对Dst指数没有明显影响. 仅当EI<-5mV/m时,磁亚暴和磁暴才会同时出现;(3) 太阳风动压的增加会增强能量向环电流的输入,但不是密度和速度单独起作用,而是以PK=ρV2的组合形式影响能量的输入;(4) 虽然行星际磁场(IMF)南向分量BZ对太阳风和磁层的耦合起着关键作用,但IMF的BX和BY分量相对于BZ的大小对太阳风向磁层的能量传输也有一定影响. 当BX、BY相对BZ较大时能量耦合加强.  相似文献   

18.
利用第23太阳活动周中WIND和ACE资料,统计分析行星际扰动对不同水平地磁活动的影响,研究磁暴强度与不同行星际参数之间的相关性,结果发现:①从长期来看,地磁活动指数Dst与太阳风速度的相关性最好,相关性在太阳活动谷年时最高;②多磁暴时序叠加结果证实了导致小、中、强磁暴开始的经验行星际南向磁场条件,磁暴过程中行星际磁场...  相似文献   

19.
The effects of the characteristics of the interplanetary medium on the radar scattering occurrence, related to the whole array of SuperDARN radars installed in the Northern Hemisphere, have been studied over a two-year period. Statistically significant correlations of the variation of the scattering occurrence are found with the merging electric field and with the negative Bz component of the interplanetary magnetic field, independent of the seasonal period considered. This result demonstrates that the merging rate (and in particular the reconnection process) between the interplanetary magnetic field and the magnetosphere is a relevant factor affecting the occurrence of scattering. For comparison, we note that no statistically significant correlations are obtained when the interplanetary ion density or the solar wind speed are considered, although also these variables affect to a small degree the scattering occurrence variation. The study of the latitudinal and magnetic local time dependence of the observations shows an association between the considered correlation and the location of the auroral oval and the cusp/cleft region.  相似文献   

20.
时变行星际太阳风模拟及其结果评估   总被引:1,自引:0,他引:1       下载免费PDF全文
背景太阳风对于地球附近的空间环境有着重要的影响,三维磁流体力学太阳风模型是背景太阳风研究和预报的重要工具.通过太阳光球磁场数据驱动的边界条件,我们发展了一个时变的行星际三维磁流体力学太阳风模型.使用这个模型,我们模拟了2008年全年的行星际背景太阳风,分析了该年太阳风结构全球特征的演化和行星际局地观测与日冕结构间的联系.实现了一套太阳风连续参数和特征结构模拟质量的定量评估方法.对2008年模拟结果的评估表明,模型较好地重现了背景太阳风的大尺度特征.模拟与观测速度间的相关性系数达到了0.6以上,行星际磁场强度与观测吻合得较好,捕获了全部的行星际磁场极性反转和82.76%的流相互作用区,行星际磁场极性反转的误报率仅为6.67%,流相互作用区的误报率仅为11.11%,两种结构的到达时间误差在1天左右.同时,通过综合分析评估结果,我们明确了高速流结构、内边界磁场分布等模型在进一步改进中需要重点注意的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号