首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Oceanologica Acta》1998,21(3):393-417
Available climatic and atmospheric analysis data have been used to prepare forcing functions for the Black Sea numerical model, based on the Bryan-Semtner-Cox Modular Ocean Model and including parameterizations for the atmosphere-ocean exchange, inflow through the strait of Bosphorus and the Mediterranean plume. Atmospheric data from different sources are compared and the drawbacks of some of them illustrated. A new wind stress data set, based on ship observations, is prepared. Compared to the existing wind stress estimates, the present ones use additional data and more accurate parameterization of the boundary layer physics. The intercomparison between forcing data sets is focused on the heat flux and freshwater flux at the sea surface.The model simulates adequately vertical stratification, seasonal variability and horizontal patterns. Five data sets for heat flux, freshwater flux and wind stress are used in different combinations to study the model response. The large differences between the simulations, forced by different wind stress and identical thermohaline forcing, justify the computation of the new wind stress. Though the forcing data used are perhaps close to the best available at the moment for the Black Sea, the model simulations range in large intervals and some of them are very poor. The model responses to forcing functions of different origin give rough estimates on the possible errors in present-day simulations. Some inconsistencies give clear indications that further verifications, improvements of the forcing functions, and intercomparisons between the responses simulated by the ocean circulation models are needed.  相似文献   

2.
以ARPS中尺度大气模式的边界层模块为基础,发展一高分辨率的大气边界层模式并将其嵌套于中尺度大气模式MM5,利用MM5的积分结果作为运行边界层模式的初值和边界强迫外参数,模式的10m风速结果和海上平台观测值相比有很好的一致性,模式的其他结果接近中尺度MM5的结果.该模式与MM5模式嵌套能得到更高分辨率的大气边界层的气象要素和参数的预报结果,提供高分辨率海洋模式的大气强迫或与其耦合,从而弥补目前大气模式和海洋模式的分辨率相差太大的不足.  相似文献   

3.
本文利用普林斯顿海洋模式(POM),建立了渤、黄海风增水预报模式和渤海湾水位海流预报模式;利用正交曲线网格提高重点区域的分辨率;采用美国海洋大气局(NOAA)全球预报风场和气压场作为模式表面强迫场,将计算域边界上的天文潮预报值与风增水模式预报的余水位相叠加构建模式的边界条件,在正压条件下,模拟了渤海湾2002年的水位流场过程。结果表明,模式能够较好地再现计算域内天文潮和综合水位的预报,域内10个潮位站模式与实测分析的m1和M2分潮的振幅与迟角差均不超过5.1cm和6.3°,15个潮流站模式与实测分析的m1和M2分潮流的振幅与迟角差均不超过7.5cm/s和15.8°,模式预报的水位值与塘沽站实测值非常接近,预报精度较单纯的天文潮预报有明显提高。  相似文献   

4.
The development of a theoretical model for estimating bottom boundary layer characteristics in the Hooghly estuary, located in the east coast of India, under combined effects of waves and currents is reported. Three numerical models, viz a depth averaged hydrodynamic model, SWAN wave model, and bottom boundary layer model, were integrated. In the bottom boundary layer parameters, maximum bottom stress, effective friction factor, and near-bed velocity both during ebb and flood phases of the tidal forcing are investigated and validated for the Haldia channel. The close match seen from results signifies applicability of this model for entire Hooghly basin.  相似文献   

5.
A three-dimensional Large Eddy Simulation (LES) model is used to simulate oscillating tidal boundary layers and test previous results obtained from one-dimensional boundary layer models and turbulence measurements in tidal channels. The LES model produces low-order turbulence statistics in agreement with the semi-analytic theory and observations. It shows a logarithmic layer in the mean velocity profile and a linear distribution of Reynolds stress with water depth. However, the eddy viscosity profile predicted by the LES model is not parabolic but better matches a parabolic profile modified by wake effect observed in the outer part of depth-limited steady boundary layers. Low-order turbulence statistics can be scaled by the instantaneous friction velocity at the bottom boundary. Although turbulence intensities in three directions fluctuate over a tidal cycle, their normalized values are in good agreement with those determined from laboratory experiments of steady open-channel flows. The LES model confirms that tidal turbulence is in quasi-equilibrium. However, it also demonstrates the importance of flow acceleration/deceleration term in the depth-integrated momentum balance for the mean flow. Phase differences are found between flows at different heights above the bottom boundary.  相似文献   

6.
The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between–1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7–9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.  相似文献   

7.
A high-resolution, multi-level, primitive equation ocean model is used to examine the response of the coastal region from 22.5°S to 35°S of the Chile Current System to both equatorward and climatological wind forcing. The results from both types of forcing show that an equatorward surface current, a poleward undercurrent, upwelling, meanders, filaments and eddies develop in response to the predominant equatorward wind forcing. When climatological wind forcing is used, an offshore branch of the equatorward surface current is also generated. These features are consistent with available observations of the Chile Current System. The model results support the hypothesis that wind forcing is an important mechanism for generating currents, eddies and filaments in the Chile eastern boundary current system and in other eastern boundary current regions which have predominantly equatorward wind forcing.  相似文献   

8.
The sensitivities of two climate-model versions—INMCM4 which participated in the Coupled Model Intercomparison Project, Phase 5 (CMIP5), and a new INMCM5 version with increased vertical and horizontal resolutions in its atmospheric block—to the quadrupled concentration of CO2 are studied. When the CO2 concentration is quadrupled, the equilibrium increase in surface temperature amounts to about 4.2 K for INMCM4, which is lower than that for other models that participated in the CMIP5. When the CO2 concentration increases, the cloud radiative forcing in the model decreases; in this case, one portion of this decrease occurs during the first year after the concentration of CO2 is quadrupled and the other portion almost linearly depends on the value of global warming. The results of additional numerical experiments with the model show that a rapid decrease in cloud-radiative forcing results from variations in stratification in the atmospheric surface boundary layer and associated increased cloudiness. The portion of a linear decrease in cloud-radiative forcing with increased temperature is associated with an increase in the water content of model clouds at higher temperatures. The elimination of these two mechanisms allows one to increase the model sensitivity to the quadrupled concentration of CO2 up to 5.2 K.  相似文献   

9.
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet–Higgins from 1953. The work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two-dimensional simulations of standing waves have also been made by application of a general purpose Navier–Stokes solver. The results agree well with those obtained by the boundary layer analysis. Wave reflection from a plane sloping wall is also investigated by using the same numerical model and by physical laboratory experiments. The phase shift of the reflected wave train is compared with theoretical and empirical models.  相似文献   

10.
Semidiurnal tides, and especially the lunar tide M2, are dominant dynamics in the Bay of Biscay. Strong tidal currents are associated with the presence of a significant continental slope. By combining Newton's gravitation laws and Euler's equations, Laplace's equations contain the astronomical forcing responsible for the observed semidiurnal tides. In shallow waters, this direct forcing is often neglected. We study here its influence on the tidal dynamics over the continental slope through the development of a simple model describing the barotropic semidiurnal dynamics on a transect perpendicular to the slope. This new model results from the combination of two different models, i.e. the one developed by Rosenfeld and Beardsley (1987), which takes into account the tide-generating force, and that of Battisti and Clarke (1982), which neglects it. A first model is developed by neglecting the direct astronomical forcing in equations: it consists in solving a second-order homogeneous propagation equation for the barotropic semidiurnal tide and needs only coastal conditions as well as the knowledge of the along-slope wave number of the solution. For a mean slope typical of the South Brittany area, this non-forced model provides results in accordance with those of Battisti and Clarke and Le Cann (1990): in particular, in the upper part of the slope, it shows a polarization inversion of tidal ellipses characteristic of the tidal dynamics observed in this area. Then, the direct astronomical forcing is kept in equations. The simple model developed without this forcing is fitted in order to solve the resulting forced propagation equation for the barotropic tide. The solution of this second model is the sum of a forced wave responding to the direct astronomical forcing and of a free wave generated at the coastal boundary. Under the same boundary conditions, the results obtained with the influence of the tide-generating force are then compared with those obtained without it. This comparison allows one to apprehend the importance of the direct astronomical forcing on tidal dynamics across the slope: in particular, the main difference appears in deep waters where this forcing induces a phase-lag between the plain and the shelf for the sea-surface slope.  相似文献   

11.
This article uses a comparison of four different numerical wave prediction models for hindcast wave conditions in Lake Michigan during a 10-day episode in October 1988 to illustrate that typical wave prediction models based on the concept of a wave energy spectrum may have reached a limit in the accuracy with which they can simulate realistic wave generation and growth conditions. In the hindcast study we compared the model results to observed wave height and period measurements from two deep water NOAA/NDBC weather buoys and from a nearshore Waverider buoy. Hourly wind fields interpolated from a large number of coastal and overlake observations were used to drive the models. The same numerical grid was used for all the models. The results show that while the individual model predictions deviate from the measurements by various amounts, they all tend to reflect the general trend and patterns of the wave measurements. The differences between the model results are often similar in magnitude to differences between model results and observations. Although the four models tested represent a wide range of sophistication in their treatment of wave growth dynamics, they are all based on the assumption that the sea state can be represented by a wave energy spectrum. Because there are more similarities among the model results than significant differences, we believe that this assumption may be the limiting factor for substantial improvements in wave modeling.  相似文献   

12.
A two layer model of an infinitely long channel, with one end closed, is applied to study the sub-tidal response to wind forcing of Puget Sound. The model uses a linear friction parameterization. Data show that the acceleration of current near the surface responds to the wind event almost instantaneously, however, acceleration tends to start decreasing at later times and eventually changes sign even though the wind blows in one direction throughout. Analysis of the model results show that when the forcing frequency is high, the phase lag between forcing and friction causes this phenomena, and as forcing frequency increases, phase lag between forcing and friction approaches /2. When the forcing frequency is low, phase lag between forcing and friction decreases almost linearly with forcing frequency and at extremely low frequency, they almost balance each other. Analysis of the model results show also that the amplitude of baroclinic pressure gradient increases rapidly as forcing frequency decreases and when the forcing frequency is low, the baroclinic pressure gradient becomes important. Effects of baroclinic pressure gradient propagate as a wave from the boundaries and it takes about one day to take effect at the point where the observations were made.  相似文献   

13.
Intercomparison of three South China Sea circulation models   总被引:2,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

14.
由于航海、海上开发作业等对海洋上风和海浪的预报提出越来越高的要求,而海浪、风暴潮等海洋水文要素的数值计算和预报,迫切需要解决海洋上风场的精确计算。但是,复杂的海面结构,大气稳定度的影响以及风、浪之间动量的交换等,使海上风的理论计算遇到很多困难,至今大部分工作是依靠统计方法。利用天气预报的形势场计算地转风或梯度风,以及它与海面摩擦、大气稳定度的经验订正关系。  相似文献   

15.
The process of upwelling/sinking and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. Further,precipitation and monsoonal floods, apart from the marine meteorological parameters, are expected to influence the sea level fluctuations along the coast. This study comprises determining the sea level from the various parameters together with the pure wind stress forcing, which is compared with the observed cycle. However, it is found that there is considerable difference between the computations and observations. This suggests that the sea level is dependent not just on the local forcing alone, but also on the induced background circulation as well. For example, the sea level changes along the east coast of India, particularly the northern region, are more sensitive to freshwater discharge from various rivers joining the Bay of Bengal. This is due to more frequently occurring pre- and postmonsoon cyclonic storms and the associated surges in the Bay of Bengal as compared to the Arabian Sea. Hence the salinity effects are particularly important in the coastal waters off the east coast of India during monsoon months (June-September). For the west coast of India, however, it is expected that the large-scale coastal circulation may play a role in determining sea level changes in addition to other forcings. The salinity effects are negligible along the west coast in the absence of any major river systems that join the Arabian Sea. The local advection currents caused by the offshore directed freshwater discharge from various estuaries joining the coastal bay also seemed to influence the sea level. In order to elucidate the essential dynamics involved and to study the effect of the remote forcing, a three-dimensional baroclinic, nonlinear numerical model is used with appropriate open boundary conditions. The local effect of the current has been incorporated in the west coast model by means of opening a channel at Cochin through which the rainwater is carried away to the model ocean. The low saline plume, cascading from north along the east cost of India, has been incorporated in the east coast model through a proper forcing applied at the northern boundary of the model. With the inclusion of these remote forcings in the models, the disagreement between the simulations and the observations is minimized.  相似文献   

16.
Boundary layer observations were made over the Gulf of Mexico over a 3-year period in order to develop and test methods for estimating surface fluxes and boundary layer wind fields. In addition to routinely available buoy and CMAN surface data, six 915 MHz radar wind profilers (RWPs) and RASS profilers were mounted on oil platforms and on the shore. Estimates of surface momentum, sensible heat, and latent heat fluxes have been made from the surface observations using the COARE software. Simulations by the National Weather Service's Eta meteorological model are compared with the observations of surface fluxes and wind profiles. The boundary layer is found to be unstable over 90% of the time, and latent heat fluxes are about five to ten times larger than sensible heat fluxes, as usually found over tropical oceans. Eta model simulations of surface fluxes are within about ±50% of COARE estimates of the fluxes based on surface observations. Most of the time, COARE-derived fluxes at 11 sites are within a factor of two of each other at any given hour. In multi-day case studies, COARE calculations are found to agree with Eta model simulations of these fluxes and parameters within a factor of two most of the time. Eta model simulations of wind speeds in the boundary layer tend to exceed the RWP observations by 1–2 m s−1 near shore and by 2–6 m s−1 at distances of 100–200 km offshore.  相似文献   

17.
The process of upwelling/sinking and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. Further,precipitation and monsoonal floods, apart from the marine meteorological parameters, are expected to influence the sea level fluctuations along the coast. This study comprises determining the sea level from the various parameters together with the pure wind stress forcing, which is compared with the observed cycle. However, it is found that there is considerable difference between the computations and observations. This suggests that the sea level is dependent not just on the local forcing alone, but also on the induced background circulation as well. For example, the sea level changes along the east coast of India, particularly the northern region, are more sensitive to freshwater discharge from various rivers joining the Bay of Bengal. This is due to more frequently occurring pre- and postmonsoon cyclonic storms and the associated surges in the Bay of Bengal as compared to the Arabian Sea. Hence the salinity effects are particularly important in the coastal waters off the east coast of India during monsoon months (June-September). For the west coast of India, however, it is expected that the large-scale coastal circulation may play a role in determining sea level changes in addition to other forcings. The salinity effects are negligible along the west coast in the absence of any major river systems that join the Arabian Sea. The local advection currents caused by the offshore directed freshwater discharge from various estuaries joining the coastal bay also seemed to influence the sea level. In order to elucidate the essential dynamics involved and to study the effect of the remote forcing, a three-dimensional baroclinic, nonlinear numerical model is used with appropriate open boundary conditions. The local effect of the current has been incorporated in the west coast model by means of opening a channel at Cochin through which the rainwater is carried away to the model ocean. The low saline plume, cascading from north along the east cost of India, has been incorporated in the east coast model through a proper forcing applied at the northern boundary of the model. With the inclusion of these remote forcings in the models, the disagreement between the simulations and the observations is minimized.  相似文献   

18.
基于参与第六次耦合模式比较计划(CMIP6)的8个地球系统耦合模式所输出的历史模拟结果,本文通过与观测对比,评估了CMIP6模式对东南印度洋亚南极模态水的模拟能力,并预估了在中等强迫情景和高强迫情景下,该模态水潜沉率、体积及性质的变化趋势。结果表明:与Argo观测相比,CMIP6模式中南印度洋混合层偏深且上层海洋的位势密度偏小,因此其模拟的东南印度洋亚南极模态水潜沉率偏大而位势密度偏小。不同CMIP6模式之间模拟的东南印度洋亚南极模态水潜沉区存在差异,混合层侧向输入是导致这一差异的主要原因。此外,在历史模拟和两种情景试验中,东南印度洋亚南极模态水均呈现出潜沉率和体积减小、温度升高、盐度和密度降低的趋势。其中,在高强迫情景下,变化趋势最大,中等强迫情景次之,历史模拟中的变化趋势最小。这表明,辐射强迫越强,东南印度洋海表温度升高和淡水输入增加的趋势越大,导致混合层变浅及其南北梯度减小的趋势越快,东南印度洋亚南极模态水潜沉率、体积和性质变化的趋势也随之增大。  相似文献   

19.
A regional ocean model with a horizontal resolution of 1/6° encompassing the New Zealand Exclusive Economic Zone is described. The regional model successfully downscaled solutions from a high resolution, global, coupled model HadCEM. Transport estimates from the global and regional models were compared with observations, and both models supported largely consistent, climatological mean solutions. The regional model used monthly mean forcing at the surface. Nevertheless, the regional model eddy kinetic energy (EKE) spatial patterns compared favourably with long‐term mean satellite altimetric estimates, although the modelled background EKE amplitudes were much lower than observed. A series of permanent eddies associated with the western boundary current system around the top of the North Island of New Zealand were reproduced, and an eddy adjacent to Norfolk Ridge was identified in both the global and regional models. The western boundary current system around the North Island of New Zealand and the associated eddies were the most sensitive components of the model solutions, being influenced by initial conditions, wind forcing, and the model domain size.  相似文献   

20.
The inner front of the southeastern Bering Sea shows marked spatial variability in frontal characteristics created by regional differences in forcing mechanisms. Differences in forcing mechanisms (sea ice advance/retreat and storm strength and timing) and early spring water properties result in strong interannual variability in biological, chemical, and physical features near the front. We have developed a simple model based on surface heat flux and water-column mixing to explain the existence of cold belts (Cont. Shelf Res. 19(14) (1999) 1833) associated with such fronts. Hydrography, fluorescence and nutrient observations show that pumping of nutrients into the euphotic zone occurs, and this can prolong primary production at the inner front. The effectiveness of this process depends on two factors: the existence of a reservoir of nutrients in the lower layer on the middle shelf and the occurrence of sufficient wind and tidal energy to mix the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号