首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acoustic scattering of a plane wave incident upon a rough surface over a transition fluid layer within which both the density and sound speed vary with depth is considered. A theory based upon a boundary perturbation method has been applied to a typical seabed environment to study the power spectral density representing the energy distribution of the scattered field over the space. The effects of frequency and roughness properties, including the roughness height, spatial correlation, and power spectrum, on the power spectral density have been investigated. The results demonstrate that the power spectral density of the scattered field depends upon all the aforementioned parameters, particularly the correlation length and the power spectrum of the rough surface, a conclusion in distinct contrast to the results for the coherent field obtained in an earlier study. It was found that the constituents of the rough surface such as the correlation length and wavenumber spectrum dominate the angular distribution of the scattered energy. These results indicate that it is crucial to employ a suitable topological model in the study of rough seabed scattering.  相似文献   

2.
This paper considers acoustic plane wave scattering from a rough seabed on a transition sediment layer overlying an elastic sea basement. The transition sediment layer is assumed to be fluid-like, with density and sound speed distributions behaving as generalized-exponential and inverse-square functions, respectively. This specific class of density and sound speed profiles deserves special attentions not only because it is geologically realistic, but also renders analytical solutions to the Helmholtz equation, making it particularly useful in the study of ocean and seabed acoustics. Based upon a boundary perturbation approach, the computational algorithm for the spatial spectrum in terms of the power spectral density of the scattered field has been developed and implemented. The results have shown that, while the coherent field mainly depends upon the gross structure of the seabed roughness, e.g., RMS roughness, the scattered field is significantly affected by the details of the roughness distributions specialized by the roughness power spectrum and the spatial correlation length of the rough surface. The dependence of the power spectral density of the scattered field on the various types of sediment stratifications, including the constant and the k2-linear sound speed distributions, is also included in the analysis.  相似文献   

3.
Plane-wave reflection from a rough surface overlying a fluid half-space, with a sound speed distribution subject to a small and random perturbation, is considered. A theory based upon a boundary perturbation method in conjunction with a formulation derived from Green's function for the coherent field in the random medium have been applied to a typical oceanic environment to study their effects on the plane-wave reflection. By considering the coherent field itself, the plane-wave reflection may be obtained straightforwardly through a procedure consistent with the formalisms currently employed in rough surface scattering. The results show that both the rough surface and medium inhomogenieties may reduce the plane-wave reflection, however, the characteristics of the curves representing their effects are different, enabling us to identify the dominant scattering mechanism. The results for the coherent reflection due to the individual scattering mechanism are compatible with those found in the existing literature.  相似文献   

4.
Experiments on the scattering of radio waves in the range 200 m to 3 cm from a rough sea surface are described. Amplitude, frequency, and space-time characteristics of scattered radio signals at different states of the sea surface are presented. It is shown that the problem of the short and medium wave scattering from the sea can be solved by the perturbance method. In this case the mechanism of scattering is of "resonant" character. The intensity of the backscatter signals is proportional to the density of the spatial spectrum on the half-length of the radio waves. The high frequency radio wave scattering is well described by a two-scale model of the scattering surface, "ripple on the large wave." The intensity of scattered radio signals is also proportional to the spectrum density of "ripples" whose length is approximately equal to half a radio wave. The effect of the large waves is to modulate the amplitude of a scattered radio signal and to broaden its frequency spectrum. Methods of solution of the reverse problem were considered. This allowed determination of parameters of sea roughness by characteristics of scattered radio signals. The principles of design of the corresponding equipment are described.  相似文献   

5.
The spatial statistics of the acoustic field in shallow water are strongly affected by interfacial roughness and volume fluctuations in the water column or the seabed. These features scatter energy, reducing the coherence of the acoustic field. This paper introduces a consistent, mode-based modeling framework for ocean scattering. First, the rough surface scattering theory of Kuperman and Schmidt is reformulated in terms of normal modes, resulting in computation times which are reduced by several orders of magnitude. Next, a perturbation theory describing scattering from sound speed and density fluctuations in acoustic media is developed. The scattering theories are combined with KRAKEN, creating a unified normal mode code for wave theory modeling of shallow-water spatial statistics. The scattered field statistics are found to be a complicated function of scattering mechanism, scatterer statistics, and acoustic environment. Bottom properties, including elasticity, strongly influence the scattered field  相似文献   

6.
The problem of coherent reflection of an acoustic plane wave from a rough seabed with a randomly inhomogeneous sediment layer overlying a uniform elastic basement is considered in this analysis. The randomness of the sound field is attributable to the roughness of the seabed and the sound-speed perturbation in the sediment layer, resulting in a joint rough surface and volume scattering problem. An approach based upon perturbation theory, combined with a derived Green's function for a slab bounded above and below by a fluid and an elastic half-space, respectively, is employed to obtain an analytic solution for the coherent field in the sediment layer. Furthermore, a boundary perturbation theory developed by Kuperman and Schmidt (1989) is applied to treat the problem of rough surface scattering. A linear system is then established to facilitate the computation of the coherent reflection field. The coherent reflection coefficients for various surface roughness, sediment randomness, frequency, sediment thickness, and basement elasticity have been generated numerically and analyzed. It was found that the higher/larger size of surface and/or medium randomness, frequency, thickness, and shear-wave speed, the lower the coherent reflection. Physical interpretations of the various results are provided.  相似文献   

7.
运用微扰法研究了平面波入射分层介质粗糙面的电磁波透射问题,采用改进的一维分形海面模型模拟实际的分层海面,推导出了平面波入射时的透射系数计算公式.通过数值计算得到了HH极化透射系数随散射角的变化曲线,讨论了中间介质介电常数和厚度、摩擦风速和入射波频率对透射系数的影响,得到改进的一维分形分层海面透射系数的基本特征、分区特征和随频率变化的特征,结果表明透射系数近似具有"量子化"特征.  相似文献   

8.
渤海沿岸固定冰粗糙特征的实测研究   总被引:1,自引:0,他引:1  
The surface roughness characteristics(e.g., height and slope) of sea ice are critical for determining the parameters of an electromagnetic scattering, a surface emission and a surface drag coefficients. It is also important in identifying various ice types, retrieval ice thickness, surface temperature and drag coefficients from remote sensing data. The point clouds(a set of points which are usually defined by X, Y, and Z coordinates that represents the external surface of an object on earth) of land fast ice in five in situ sites in the eastern coast Bohai Sea were measured using a laser scanner-Trimble GX during 2011–2012 winter season. Two hundred and fifty profiles selected from the point clouds of different samples have been used to calculate the height root mean square, height skewness, height kurtosis, slope root mean square, slope skewness and slope kurtosis of them. The root mean square of the height, the root mean square of the slope and the correlation length are about 0.090, 0.075 and 11.74 m, respectively. The heights of 150 profiles in three sites manifest the Gaussian distribution and the slopes of total 250 profiles distributed exponentially. In addition, the fractal dimension and power spectral density profiles were calculated. The results show that the fractal dimension of land fast ice in the Bohai Sea is about 1.132. The power spectral densities of 250 profiles can be expressed through an exponential autocorrelation function.  相似文献   

9.
As part of the sediment acoustics experiment 1999 (SAX99), backscattering from a sand sediment was measured in the 20- to 300-kHz range for incident grazing angles from 10/spl deg/ to 40/spl deg/. Measured backscattering strengths are compared to three different scattering models: a fluid model that uses the mass density of the sediment in determining backscattering, a poroelastic model based on Biot theory and an "effective density" fluid model derived from Biot theory. These comparisons rely heavily on the extensive environmental characterization carried out during SAX99. This environmental characterization is most complete at spatial scales relevant to acoustic frequencies from 20 to 50 kHz. Model/data comparisons lead to the conclusions that rough surface scattering is the dominant scattering mechanism in the 20-50-kHz frequency range and that the Biot and effective density fluid models are more accurate than the fluid model in predicting the measured scattering strengths. For 50-150 kHz, rough surface scattering strengths predicted by the Biot and effective density fluid models agree well with the data for grazing angles below the critical angle of the sediment (about 30/spl deg/) but above the critical angle the trends of the models and the data differ. At 300 kHz, data/model comparisons indicate that the dominant scattering mechanism may no longer be rough surface scattering.  相似文献   

10.
Current models used to predict the backscattering strength of the ocean floor are either very involved, requiring geoacoustic parameters usually unavailable for the site in practical applications, or overly simplistic, relying mainly on empirical terms such as Lambert's law. In any case, solutions are very approximate and the problem is still far from being solved. In this paper, a model is presented that avoids empirical functional forms yet requires only a few physical parameters to describe the surficial sediments, often tabulated for typical sediments. The aim of this paper is to develop a simple algorithm for operational prediction of bottom reverberation with only one free parameter, i.e., the volume scattering coefficient. The algorithm combines a two scale surface scattering model with scattered contributions originating from inhomogeneities within the sediments, talking into consideration the rough interface. No specific mechanism is assumed for scattering at the volume inhomogeneities; however, the inhomogeneities are assumed to be uniform and isotropic. The volume scattering coefficient, combined with the bottom attenuation and density and referenced to the surface, plays a role similar to the Lambert's constant in empirical models. The model is exercised on a variety of published datasets for low and moderately high frequency. In general, the model performs very well for both fast and slow sediments, showing a definite improvement over Lambert's law  相似文献   

11.
田炜  任新成  黄保瑞 《海洋通报》2011,30(2):227-233
运用微扰法研究了平面电磁波入射随机粗糙面的电磁散射问题,得到了具有A.K.Fung海谱的粗糙海面散射截面的数学表达式,进一步得出了不同极化状态下散射系数的计算公式.通过数值计算得到了双站和单站两种情形下散射系数随散射角、风速、入射波频率变化的曲线,讨论了粗糙面高度起伏均方根、海水温度、风速、入射波频率对散射系数的影响,...  相似文献   

12.
The neutrally stratified boundary layer over a smooth rough surface is consider. The turbulent flow is simulated using a finite-difference eddy-resolving model of the atmospheric boundary layer (ABL). The model includes different turbulence closure schemes and numerical approximations for advection components of the momentum balance equation. We investigate the quality of reproduction of spectral characteristics of the turbulent flow and the model’s capabilities to reproduce the observed profile of mean wind velocity near the rough surface. It is shown that the best result is obtained by coupling a numerical scheme of higher order of accuracy with a mixed closure scheme based on an adaptive estimation of the mixing length for subgrid-scale fluctuations. Here, we are able to reproduce the asymptotics of the fluctuation spectrum of the longitudinal component of wind velocity near the surface and within the boundary layer as well as the logarithmic profile of mean velocity near the surface.  相似文献   

13.
A simple numerical technique is developed for generating pseudorandom realizations of three-dimensional (3-D) transient acoustic waves that are scattered from two-dimensional (2-D) patches of randomly rough surfaces. The rough surface height of a patch is represented numerically in the 2-D horizontal wavenumber plane by choosing a scheme for interpolation between pseudorandom complex coefficients. Using this approach, the realizations of the patches can be generated from experimentally measured roughness power spectra, and phase information is generated in the frequency domain that leads to time spreads in the time domain. The acoustic scattering is modeled here with first-order perturbation theory. The boundary conditions considered here are pressure-release, rigid, and fluid-fluid. Three different spatial windows are considered for defining the patches. In the time domain, the time spreads of the scattered waveforms agree with predictions. In the frequency domain, the phase is seen as a random walk. The solutions developed here can be used with normal mode propagation models or ray propagation models  相似文献   

14.
A newly developed three-dimensional Doppler current meter is described and the results of preliminary field experiments are presented where simultaneous measurements of surface elevation and water velocity associated with wave orbital motion were made. The phase difference between the surface elevation and the vertical velocity measured at 1.0 and 0.45 meters below the mean water level is found to be approximately 90, in accord with the theory for surface waves of infinitesimally small amplitudes. The spectral (frequency) density distribution for velocity is also found to agree with that we would expect from the linear theory for the observed frequency distribution of surface elevation. However, the amplitude of velocity is consistently smaller (about 10 %) than that we would expect. This reduction of amplitude is more pronounced in cases where waves are high and the water depth is shallow.  相似文献   

15.
The capabilities and limitations of the simulation of the probability density of rough sea surface elevations using the Gram-Charlier series are analyzed. The data of direct wave measurements at an oceanographic platform in the Black Sea are used in the analysis. The skewness of the sea surface elevation’s distribution depends on the mean slope formed by the dominating waves and on the degree of the wave field development. A weak trend in the variations of the peakedness during the measurements of these parameters is also observed. The estimates of the errors in the peakedness measurements during the construction of the probability density of the sea surface elevations using the first five terms of the Gram-Charlier series are presented.  相似文献   

16.
Studies on low-frequency acoustic wave-scattering phenomena due to under-ice roughness made by utilizing a rough, thin-ice plate model are presented. The model naturally divides the reflected field solution into specular and off-specular components. The model for specular components can give an excellent propagation loss prediction if the combined effects of under-ice roughness scattering, ice absorptions, and ice thickness are taken into account. The model for scattered or off-specular components is evaluated for a point source and point receiver geometry to study various spreading phenomena  相似文献   

17.
We consider the problem of disagreement between the theoretical and experimental values of the spectral volume scattering function of “pure” filtered water. To explain this disagreement, we advance a hypothesis of existence of two-dimensional space correlations between the locations of a finely divided suspension in the liquid. We deduce analytic relations for the scattering of light in the approximation of statistically equilibrium distribution of particles over the surfaces of spheres randomly arranged in the medium. The experimental data on the volume scattering function of “pure” filtered water (the sizes of particles do not exceed 0.2 μm) are analyzed. The results of numerical analysis according to the model of spherical surface distribution of finely divided particles in water are in qualitative agreement with the spectral volume scattering function of filtered water. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 46–56, March–April, 2008.  相似文献   

18.
An analysis of the radar backscattering from the ocean surface covered by oil spill is presented using a microwave scattering model and Monte-Carlo simulation. In the analysis, a one-dimensional rough sea surface is numerically generated with an ocean waveheight spectrum for a given wind velocity. A two-layered medium is then generated by adding a thin oil layer on the simulated rough sea surface. The electric fields backscattered from the sea surface with two-layered medium are computed with the method of moments (MoM), and the backscattering coefficients are statistically obtained with N independent samples for each oil-spilled surface using the Monte-Carlo technique for various conditions of surface roughness, oil-layer thickness, frequency, polarization and incidence angle. The numerical simulation results are compared with theoretical models for clean sea surfaces and SAR images of an oil-spilled sea surface caused by the Hebei (Hebei province, China) Spirit oil tanker in 2007. Further, conditions for better oil spill extraction are sought by the numerical simulation on the effects of wind speed and oil-layer thickness at different incidence angles on the backscattering coefficients.  相似文献   

19.
The effects of boundary reflection loss, scattering loss caused by the rough surface and the radiative directivity of the surface sources (parameter m) on the ambient noise field in shallow-water homogeneous layer have been discussed theoretically. It has been found that the parameter m has the stronger controlling role on the behavior of the ambient noise field than others.  相似文献   

20.
目标特性研究对军事及海洋开发具有重要意义。作者用Ingenito的简正波方法对浅海波导中刚性球的散射进行了理论研究。在理论推导中直接利用波导中简正波解,同时去掉文F.Izngenito等研究中的远场假设,使理论结果更具一般性。文中对浅海波导中刚性球的散射进行了数值计算,并进行了分析。结果表明,浅海波导中目标散射场特性与自由场中明显不同,海底、海面的存在使散射场在深度方向产生干涉,从而影响散射场的空间分布,海底声速及衰减系数对散射场空间分布有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号