首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Lahars (volcanic debris flows) have been responsible for 40% of all volcanic fatalities over the past century. Mount Semeru (East Java, Indonesia) is a persistently active composite volcano that threatens approximately one million people with its lahars and pyroclastic flows. Despite their regularity, the behaviour and the propagation of these rain‐triggered lahars are poorly understood. In situ samples were taken from lahars in motion at two sites in the Curah Lengkong River, on the southeast flank of Semeru, providing estimates of the particle concentration, grain size spectrum, grain density and composition. This enables us to identify flow sediment from three categories of lahars: (a) hyperconcentrated flow, (b) non‐cohesive, clast‐ and matrix‐supported debris flow, and (c) muddy flood. To understand hyperconcentrated flow sediment transport processes, it is more appropriate to sample the active flows than the post‐event lahar deposits because in situ sampling retains the full spectrum of the grain‐size distribution. Rheometrical tests on materials sampled from moving hyperconcentrated flows were carried out using a laboratory vane rheometer. Despite technical difficulties, results obtained on the <63, <180, and <400 µm fractions of the sampled sediment, suggest a purely frictional behaviour. Importantly, and contrary to previous experiments conducted with monodisperse suspensions, our results do not show any transition towards a viscous behaviour for high shear rates. These data provide important constraints for future physical and numerical modelling of lahar flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   

3.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

4.
Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.  相似文献   

5.
The Pucón eruption was the largest Holocene explosive outburst of Volcán Villarrica, Chile. It discharged >1.0 km3 of basaltic-andesite magma and >0.8 km3 of pre-existing rock, forming a thin scoria-fall deposit overlain by voluminous ignimbrite intercalated with pyroclastic surge beds. The deposits are up to 70 m thick and are preserved up to 21 km from the present-day summit, post-eruptive lahar deposits extending farther. Two ignimbrite units are distinguished: a lower one (P1) in which all accidental lithic clasts are of volcanic origin and an upper unit (P2) in which basement granitoids also occur, both as free clasts and as xenoliths in scoria. P2 accounts for ∼80% of the erupted products. Following the initial scoria fallout phase, P1 pyroclastic flows swept down the northern and western flanks of the volcano, magma fragmentation during this phase being confined to within the volcanic edifice. Following a pause of at least a couple of days sufficient for wood devolatilization, eruption recommenced, the fragmentation level dropped to within the granitoid basement, and the pyroclastic flows of P2 were erupted. The first P2 flow had a highly turbulent front, laid down ignimbrite with large-scale cross-stratification and regressive bedforms, and sheared the ground; flow then waned and became confined to the southeastern flank. Following emplacement of pyroclastic surge deposits all across the volcano, the eruption terminated with pyroclastic flows down the northern flank. Multiple lahars were generated prior to the onset of a new eruptive cycle. Charcoal samples yield a probable eruption age of 3,510 ± 60 14C years BP.  相似文献   

6.
Of 1.1 million people living on the flanks of the active Merapi volcano, 440,000 are at relatively high risk in areas prone to pyroclastic flows, surges, and lahars. For the last two centuries, the activity of Merapi has alternated regularly between long periods of viscous lava dome extrusion, and brief explosive episodes at 8–15 year intervals, which generated dome-collapse pyroclastic flows and destroyed part of the pre-existing domes. Violent explosive episodes on an average recurrence of 26–54 years have generated pyroclastic flows, surges, tephra-falls, and subsequent lahars. The 61 reported eruptions since the mid-1500s killed about 7000 people. The current hazard-zone map of Merapi (Pardyanto et al., 1978) portrays three areas, termed ‘forbidden zone’, ‘first danger zone’ and ‘second danger zone’, based on successively declining hazards. Revision of the hazard map is desirable, because it lacks details necessary to outline hazard zones with accuracy, in particular the valleys likely to be swept by lahars, and excludes some areas likely to be devastated by pyroclastic gravity-currents such as the 22 November 1994 surge. In addition, risk maps should be developed to incorporate social, technical, and economic factors of vulnerability.Eruptive hazard assessment at Merapi is based on reconstructed eruptive history, on eruptive behavior and scenarios, and on existing models and preliminary numerical modeling. Firstly, the reconstructed eruptive activity, in particular for the past 7000 years and from historical accounts of eruptions, helps to define the extent and recurrence frequency of the most hazardous phenomena (Newhall et al., 2000; Camus et al., 2000). Pyroclastic flows traveled as far as 9–15 km from the source, pyroclastic surges swept the flanks as far as 9–20 km away from the vent, thick tephra fall buried temples in the vicinity of Yogyakarta 25 km to the south, and subsequent lahars spilled down the radial valleys as far as 30 km to the west and south. At least one large edifice collapse has occurred in the past 7000 years (Newhall et al., 2000; Camus et al., 2000). Secondly, four eruption scenarios are portrayed as hazardous zones on two maps and derived from the past eruptive behavior of Merapi and from the most affected areas in the past. Thirdly, simple numerical simulation, based on a Digital Elevation Model, a stereo-pair of SPOT satellite images, and one 2D-orthoimage helps to simulate pyroclastic and lahar flowage on the flanks and in radial valley channels, and to outline areas likely to be devastated.Three major threats are identified: (1) a collapse of the summit dome in the short-to mid-term, that can release large-volume pyroclastic flows and high-energy surges towards the south–southwest sector of the volcano; (2) an explosive eruption, much larger than any since 1930, may sweep all the flanks of Merapi at least once every century; (3) a potential collapse of the summit area, involving the fumarolic field of Gendol and part of the southern flank, which can contribute to moderate-scale debris avalanches and debris flows.  相似文献   

7.
During late Pleistocene time, the extrusion of an andesitic dome at the summit of Tacaná volcano caused the collapse of its northwestern flank. The stratocone collapse was nearly parallel to the σ min stress direction suggesting that failure was controlled by the regional stress field. The event produced a debris avalanche that was channelized in the San Rafael River and moved 8 km downstream. The deposit covered a minimum area of 4 km2, had a volume of 0.8 ± 0.5 km3, with an H/L (vertical drop to horizontal transport distance ratio) of ~0.35, defining a degree of mobility that is atypical for volcanic debris avalanches. The flank failure undermined the summit dome leading to its collapse and the generation of a series of block-and-ash flows that were emplaced in quick succession and covered the avalanche surface. The collapse event left a 600-m-wide summit amphitheatre with a 30-degree opening to the northwest, and >200 m thick debris that blocked the San Rafael River. Remobilization of this material produced debris flows that eroded the primary deposits and cascaded into the Coatán River. After the collapse, the activity of Tacaná continued with the emission of the Agua Zarca lava flow dated at 10 ± 6 ka (40Ar/39Ar), and pyroclastic surges dated at 10,610 + 330/−315 yr BP (14C), which provide a minimum age for the collapse event. During the Holocene, Tacaná has been very active producing explosive and effusive eruptions that ended with the extrusion of two summit domes that today occupy the amphitheatre. The 1950 and 1986 phreatic outbursts occurred along the Pleistocene collapse scar. Currently ~300,000 inhabitants live within a 35 km radius of Tacaná, and could conceivably be impacted by future events of similar magnitude.  相似文献   

8.
The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of clastogenic lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.  相似文献   

9.
The history of volcan Popocatepetl can be divided into two main periods: the formation of a large primitive volcano — approximatively 30 km wide — on which is superimposed a modern cone (6–8 km in diameter and 1700m high). A major event of Bezymianny type marks the transition between these two dissimilar periods.The activity of the primitive volcano was essentially effusive and lasted several hundred thousands of years. The total volume of products ejected by the volcano is of the order of 500–600 km3. Its last differentiated magmas are dacitic.A gigantic debris flow (D.F.) spread on the southern side is related to the Bezymianny-type event which destroyed the summit area of the ancient edifice. An elliptical caldera ( 6.5 × 11 km wide) was formed by the landslide. Its deposits, with a typical hummocky surface, cover 300 km2 for a volume of 28–30 km3. Numerous outcrops belonging to this debris flow show “slabs” of more or less fractured and dislocated rocks that come from the primitive volcano. These deposits are compared to two studied debris flows of similar extent and volume: the Mount Shasta and Colima's D.F.This eruption takes a major place in the volcanologic and magmatic history of Popocatepetl: pyroclastic products of surge-type with “laminites” and crude layers, ashflows, and pumiceous airfall layers are directly related to this event and begin the history of the modern volcano probably less than 50,000 years ago. In addition, a second andesitic and dacitic phase rose both from the central vent — forming the basis of modern Popo — and from lateral vents.The terminal cone is characterized by long periods of construction by lava flows alternating with phases of destruction, the duration of these episodes being 1000 to 2000 years. The cone is composed of two edifices: the first, volcan El Fraile, began with effusive activity and was partly destroyed by three periods of intense explosive activity. The first period occurred prior to 10.000 years B.P., the second from 10.000 to 8000 years B.P. and the third from 5000 to 3800 years B.P. Each period of destruction shows cycles producing collapsing pyroclastic flows or nuées of the St Vincent-type related to the opening of large craters, plinian air-fall deposits and minor lava flows. The second edifice, the summit Popo, produced lava flows until 1200 years B.P. and since that time, entered into an explosive period. Two cataclysmic episodes, each including major pyroclastic eruptions, occurred 1200 and 900–1000 years ago. During the Pre-Hispanic and historic times effusive activity was restricted entirely to the summit area alternating with plinian eruptions. Nevertheless, despite the quiet appearance of the volcano, the last period of pyroclastic activity which started 1200 years ago may not have ended and can be very dangerous for the nearby populations.  相似文献   

10.
 In contrast to most twentieth-century eruptions of Kelud volcano (eastern Java), the 10 February 1990 plinian eruption was not accompanied by lake-outburst lahars. However, at least 33 post-eruption lahars occurred between 15 February and 28 March 1990. They swept down 11 drainage systems and travelled as far as 24 km at an estimated mean peak velocity in the range of 4–11 m s–1. The deposits (volume ≥30 000 000 m3) were approximately 7 m thick 2 km from vent, and 3 m thick 10 km from vent, on the volcaniclastic apron surrounding the volcano. Subtle but significant sedimentological differences in the deposits relate to four flow types: (a) Early, massive deposits are coarse, poorly sorted, slightly cohesive, and commonly inversely graded. They are inferred to record hot lahars that incorporated pumice and scoria from pyroclastic-flow deposits, probably by rapid remobilization of hot proximal pyroclastic flow deposits by rainfall runoff. Sedimentary features, such as clasts subparallel to bedding and thick, reversely to ungraded beds, suggest that these flows were laminar. (b) Abundant, very poorly sorted deposits include non-cohesive, clast-supported, inversely graded beds and ungraded, finer-grained, and cohesive matrix-supported beds. These beds display layering and vertical segregation/density stratification, suggesting unsteady properties of pulsing debris flows. They are interpreted as deposited from segments of flow waves at a middle distance downstream that incorporated pre-eruption sediments. Sedimentological evidence suggests unsteady flow properties during progressive aggradation. (c) Fine-grained, poorly sorted and ungraded deposits are interpreted as recording late hyperconcentrated streamflows that formed in the waning stage of an overflow and transformed downcurrent into streamflows. (d) Ungraded, crudely stratified deposits were emplaced by flows transitional between hyperconcentrated flows and streamflows that traveled farther downvalley (as far as 27 km from the vent). At Kelud, the transformation of flow and behavior occurs within only 10 km of the source, at the apex of the alluvial fans. The rapid change of flow behavior is attributed to the low fines content and to the unsteady flow regime, which may be due to: (a) the rapid deposition of bedload, owing to the break in channel gradient close to the vent and to changes in channel cross-section and roughness; and (b) the very low silt+clay content in the non-cohesive deposits. These deposits mix with water to produce streamflows. Received: 27 June 1997 / Accepted: 5 January 1998  相似文献   

11.
We present multi-parameter geophysical measurements of rainfall-induced lahars at Semeru Volcano, East Java, using two observation sites 510 m apart, 11.5 km from the summit. Our study site in the Curah Lengkong channel is composed of a 30-m wide box-valley, with a base of gravel and lava bedrock, representing an ideal geometry for high density measurements of active lahars. Instrumentation included pore-pressure sensors (stage), a broad-band seismograph (arrival times, vibrational energy, and turbulence), video footage, and direct bucket sampling. A total of 8 rainfall-induced lahars were recorded, with durations of 1–3 h, heights 0.5–2 m, and peak velocities 3–6 m/s. Flow types ranged from dilute to dense hyperconcentrated flows. These recorded flows were commonly composed of partly coalesced, discrete and unsteady gravity current packets, represented by multiple peaks within each lahar. These packets most likely originate from multiple lahar sources, and can be traced between instrument sites. Those with the highest concentrations and greatest wetted areas were often located mid-lahar at our measured reach, accelerating towards the flow front. As these lahars travel downstream, the individual packets thus coalesce and the flow develops a more organised structure. Observations of different degrees of coalescence between these discrete flow packets illustrate that a single mature debris flow may have formed from multiple dynamically independent lahars, each with different origins.  相似文献   

12.
Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000–1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2–3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas.Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.Editorial responsibility: D Dingwell  相似文献   

13.
Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).  相似文献   

14.
Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars.Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30° to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180°, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano.We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180°. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast.For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano. For short-term hazard assessments, if seismicity and deformation indicate that magma is moving toward the flank of a volcano, it should be recognized that a landslide could lead to the sudden unloading of a magmatic or hydrothermal system and thereby cause a catastrophic lateral blast. A hazard assessment should assume that a lateral blast could directly affect an area at least 180° wide to a distance of 35 km from the site of the explosion, irrespective of topography.  相似文献   

15.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

16.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

17.
Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971–2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996–2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996–2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.  相似文献   

18.
A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable “wet” character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from the underlying dry and hot pyroclastic material that had been deposited only moments earlier. The hummocky unit is the deposit of a high-viscosity debris flow which formed when lahars mingled with the pyroclastic materials on Smith Creek valley floor. Overlying the debris flow are voluminous pyroclastic deposits of pebbly sand cut by fines-poor gas-escape pipes and containing charred wood. The deposits are thickest in topographic lows along margins of the hummocky diamict. Emplaced several minutes after the hot surge had passed, this is the deposit of numerous secondary pyroclastic flows derived from surge material deposited unstably on steep valley sides.  相似文献   

19.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

20.
Tungurahua, one of Ecuador's most active volcanoes, is made up of three volcanic edifices. Tungurahua I was a 14-km-wide andesitic stratocone which experienced at least one sector collapse followed by the extrusion of a dacite lava series. Tungurahua II, mainly composed of acid andesite lava flows younger than 14,000 years BP, was partly destroyed by the last collapse event, 2955±90 years ago, which left a large amphitheater and produced a ∼8-km3 debris deposit. The avalanche collided with the high ridge immediately to the west of the cone and was diverted to the northwest and southwest for ∼15 km. A large lahar formed during this event, which was followed in turn by dacite extrusion. Southwestward, the damming of the Chambo valley by the avalanche deposit resulted in a ∼10-km-long lake, which was subsequently breached, generating another catastrophic debris flow. The eruptive activity of the present volcano (Tungurahua III) has rebuilt the cone to about 50% of its pre-collapse size by the emission of ∼3 km3 of volcanic products. Two periods of construction are recognized in Tungurahua's III history. From ∼2300 to ∼1400 years BP, high rates of lava extrusion and pyroclastic flows occurred. During this period, the magma composition did not evolve significantly, remaining essentially basic andesite. During the last ∼1300 years, eruptive episodes take place roughly once per century and generally begin with lapilli fall and pyroclastic flow activity of varied composition (andesite+dacite), and end with more basic andesite lava flows or crater plugs. This pattern is observed in the three historic eruptions of 1773, 1886 and 1916–1918. Given good age control and volumetric considerations, Tungurahua III growth's rate is estimated at ∼1.5×106 m3/year over the last 2300 years. Although an infrequent event, a sector collapse and associated lahars constitute a strong hazard of this volcano. Given the ∼3000 m relief and steep slopes of the present cone, a future collapse, even of small volume, could cover an area similar to that affected by the ∼3000-year-old avalanche. The more frequent eruptive episodes of each century, characterized by pyroclastic flows, lavas, lahars, as well as tephra falls, directly threaten 25,000 people and the Agoyan hydroelectric dam located at the foot of the volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号