首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Collapsing white dwarf stars (or degenerate cores) may occur in binary systems, in the formation of Type I supernovae or in the formation of pulsars. These collapsing configurations may explode their nuclear fuel (12C or16O) by the detonation wave mechanism. A combination of analytical and numerical models is used to investigate the formation of detonation waves. The tentative conclusion is that a detonation wave will form which will lead to the ignition of esentially all the fuel in such a collapsing star. This potentially explosive configuration will be strongly affected, however, by rapid beta processes which occur in the detonated matter and which should cause a fraction of the stellar mass to collapse toward a neutron star state. The nature and effect of such beta processes, which have not yet been incorporated in the dynamical calculations, are discussed.An appendix gives approximate expressions for the pressureP(,T) and the internal energy densityU(,T) for a degenerate relativistic electron gas and an analysis of the errors expected in making such approximations to the standard parametric form of the equation of state. These expressions are useful in analyzing shock waves in a degenerate electron gas.Supported in part by the National Science Foundation [GP-15911, GP-9114, GP-19887] and the Office of Naval Research [Nonr-220 (47)] at the California Institute of Technology, and National Science Foundation Grant GP-12455 at the University of Colorado.  相似文献   

2.
We discuss a theoretical method of computing the temperature structure of hot and cool streams in convective stellar atmospheres. The method is based on the model that the streams are due to organized cells whose diameters are greater than the thickness of the photosphere. The excess thermal energy of matter rising from the deeper layers, where the entropy is higher than in the photosphere, is converted to radiation in a steady front. This model, applied to the solar case, exhibits a peak-to-peak contrast of 30–40% between granules and lanes. This contrast agrees with the Stratoscope data reduced by Namba and Diemel (1969). As a necessary part of the theory, we obtain an expression for the perturbation in radiative heat exchange which may be used in a medium with a strongly preferred direction such as a stellar atmosphere.Supported in part by the National Science Foundation [GP-15911 (formerly GP-9433), GP-9114] and the Office of Naval Research [Nonr-220(47)].  相似文献   

3.
In an investigation of the evolution of homogeneous, isentropic, stars through stages of diminishing entropy, Rakavy and Shaviv (1968) have recently found that stars of mass less thanM c (Chandrasekhar's limiting mass for white dwarfs) evolve into white dwarfs, while stars of mass greater thanM c approach a (singular) state of minimum entropy. An elementary explanation of these results is given and qualitative effects of general relativity are discussed. It is found that stars which are lighter than the Oppenheimer and Volkoff (1939) limit become white dwarfs, while heavier stars must become dynamically unstable at a finite stage in their evolution.  相似文献   

4.
In this paper we attempted to relate the relative abundance measurements of the solar wind at the earth's orbit to conditions in the solar corona. We followed the distribution of ionization stages of oxygen and helium by integrating the coupled rate equations outward from the corona to the earth's orbit. We concluded that the material observed in the solar wind at the earth's orbit must be a superposition of contributions from hotter and cooler regions of the corona.Supported in part by the National Science Foundation [GP-7976, formerly GP-5391] and the Office of Naval Research [Nonr-220(47)].  相似文献   

5.
The generalization of the fluid-dynamical approach from one-component star clusters to clusters with several stellar groups (as far as the star masses are concerned) has been applied to the study of two-component clusters. Rather extreme values of stellar masses and masses of groups were chosen in order to emphasize the different dynamical evolutions and asymptotic behaviours. Escape of stars from clusters and the problem of equipartition of kinetic energy among the two star groups are discussed. Comparisons of the main features of our results with those obtained by other authors have shown a good agreement. Some characteristic properties of the last computed models with an age of 18×109 yr have been pointed out and discussed in relation with some observed features of galactic globular clusters.  相似文献   

6.
An analysis of Rayleigh's problem (also Stokes's problem) for the flow of a viscous fluid (e.g. of a stellar atmosphere) past an impulsively started infinite, vertical porous limiting surface (e.g. of a star) with constant suction, when the free stream velocity oscillates in time about a constant mean, has been carried out. On solving the coupled non-linear equations in approximate way, expressions for the mean velocity, the mean temperature, the mean skin-friction and the mean rate of heat transfer, expressed in terms of Nusselt number, are obtained. The effects of Grashof numberG, Eckert numberE and Prandtl numberP, on these quantities, is discussed for the cases of an externally heating and cooling of the limiting surface, by the free convection currents, and the variations of them are shown graphically.  相似文献   

7.
In the present article we construct physically viable models of anisotropic charged compact stellar objects admitting quadratic equation of state and linear equation of state. We analyze the physical behavior of compact star models 4U1538-52, LMCX-4, and Vela X-1 with in the frame work of general relativity. Our stellar models are free from singularities, satisfy all energy conditions and exhibit physically admissible characters. The necessary stability criteria viz. Buchdhal condition, adiabatic index and causality condition all stand true for our charged anisotropic compact stellar models. We also inspect the physical characteristics of compact stars via Linear equation of state by applying slight changes in the parameters of the models pertaining to Quadratic equation of state and analyze the models in the perspective of both equations of state. We study the physical attributes of the model 4U1538-52 extensively by implementing analytical and graphical tools. The models retain their validity for both linear as well as quadratic equations of state, however there is a slight variation in few attributes of the models.  相似文献   

8.
This is the third paper of a series devoted to the study of the global properties of Joguet's sample of 79 nearby galaxies observable from the southern hemisphere, of which 65 are Seyfert 2 galaxies. We use the population synthesis models of Paper II to derive 'pure' emission-line spectra for the Seyfert 2 galaxies in the sample, and thus explore the statistical properties of the nuclear nebular components and their relation to the stellar populations. We find that the emission-line clouds suffer substantially more extinction than the starlight, and we confirm the correlations between stellar and nebular velocity dispersions and between emission-line luminosity and velocity dispersions, although with substantial scatter. Nuclear luminosities correlate with stellar velocity dispersions, but Seyferts with conspicuous star-forming activity deviate systematically towards higher luminosities. Removing the contribution of young stars to the optical continuum produces a tighter and steeper relation,   L ∝σ4  , consistent with the Faber–Jackson law.
Emission-line ratios indicative of the gas excitation such as [O  iii ]/Hβ and [O  iii ]/[O  ii ] are statistically smaller for Seyferts with significant star formation, implying that ionization by massive stars is responsible for a substantial and sometimes even a dominant fraction of the Hβ and [O  ii ] fluxes. We use our models to constrain the maximum fraction of the ionizing power that can be generated by a hidden active galactic nucleus (AGN). We correlate this fraction with classical indicators of AGN photoionization (i.e. X-ray luminosity and nebular excitation), but find no significant correlations. Thus, while there is a strong contribution of starbursts to the excitation of the nuclear nebular emission in low-luminosity Seyferts, the contribution of the hidden AGN remains elusive even in hard X-rays.  相似文献   

9.
Low metallicity (−3 <=[Fe/H] < = −1) halo field giants exhibit the expected correlation of Na and Mg abundances, based on the assumption that Na is produced in the same nucleosynthetic sites as are the alpha elements, confirming a result noted by Sneden (1998). On the other hand, giants in at least some globular clusters (especially M13, but also M15 and NGC 6752) do not exhibit the Mg vs Na correlation found among halo field giants (Hanson et al., 1998). The very large [Na/Fe]-ratios and widely scattered [Mg/Fe]-ratios found among M13 giants depend, on the average, on evolutionary state and are probably induced by deep mixing of stellar envelopes through the CNO hydrogen-burning shell. Why M13 (and M15 and NGC 6752) giants should experience deep mixing whereas field halo giants in the same evolutionary state mix not at all is an anomaly unexplained by current theories of stellar evolution. By contrast, giants in the outer halo cluster NGC 7006 show little evidence of deep mixing (Kraft et al., 1998). These differences in the degree of deep mixing among stars in related, but different, stellar populations may be connected to the so-called `second parameter effect'. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Theoretical models are calculated for 15 planetary nebulae of medium-to-high excitation, following procedures previously described. Initial stellar energy distributions are adopted from Cassinelli (1971), but are subsequently modified to obtain the best representation of optical spectra for the selected objects. Other adjustable parameters include the stellar radius,R (*), the nebular density,N H, the truncation radius,r c, for the nebular shell, and the chemical composition. Excitationsensitive ratios are usually well-represented as are the actual observed intensities of spectral lines. Forbidden lines arising from 3p 3 configurations, e.g., those of [SII], [ArIV], and [ClIII] offer difficulties. For this sample of nebulae, the mean abundances seem to agree well with those found in an earlier study where the models were used as interpolation devices (Aller, 1978). Our objective is not to use the models to derive abundances explicitly, but rather to use them to find ionization correction factors. Some cautions and limitations of this procedure are described.  相似文献   

11.
This paper provides a comprehensive analysis of the effects of a uniform transverse magnetic field on the free-convection flow of a viscous incompressible and electrically conductive fluid (e.g., of a stellar atmosphere) past an impulsively started, infinite, porous, vertical limiting surface (e.g., of a star) with a constant suction. The magnetic Reynolds number is assumed small so that the induced magnetic field is considered negligible. Exact solution of the equations governing the flow is obtained in closed form with the help of the Laplace transform technique when the Prandtl numberP=1. Expressions are given for the velocity field, for the temperature field and for their related quantities. The results thus obtained are discussed quantitatively in the last section of this paper.  相似文献   

12.
We present very low-mass stellar models as computed using non-grey model atmospheres for selected assumptions about the stellar metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation, and with similar models that have appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass–luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighbourhood reveals a satisfactory agreement together with the existence of some residual mismatches.  相似文献   

13.
We analyse two recent computations of Type II supernova nucleosynthesis by Woosley & Weaver (hereafter WW95) and Thielemann, Nomoto & Hashimoto (hereafter TNH96), focusing on the ability to reproduce the observed [Mg/Fe] ratios in various galaxy types. We show that the yields of oxygen and total metallicity are in good agreement. However, TNH96 models produce more magnesium in the intermediate and less iron in the upper mass range of Type II supernovae than WW95 models. To investigate the significance of these discrepancies for chemical evolution, we calculate simple stellar population yields for both sets of models and different initial mass function slopes. We conclude that the Mg yields of WW95 do not suffice to explain the [Mg/Fe] overabundance either in giant elliptical galaxies and bulges or in metal-poor stars in the solar neighbourhood and the Galactic halo. Calculating the chemical evolution in the solar neighbourhood according to the standard infall model, we find that, using WW95 and TNH96 nucleosynthesis, the solar magnesium abundance is underestimated by 29 and 7 per cent, respectively.   We include the relaxation of the instantaneous mixing approximation in chemical evolution models by splitting the gas component into two different phases. In additional simulations of the chemical evolution in the solar neighbourhood, we discuss various time-scales for the mixing of the stellar ejecta with the interstellar medium. We find that a delay of the order of 108 yr leads to a better fit of the observational data in the [Mg/Fe]–[Fe/H] diagram without destroying the agreement with solar element abundances and the age–metallicity relation.  相似文献   

14.
Differential equations are derived, following the methods ofLifshitz (1946) andLifshitz andKhalatnikov (1963), for density perturbations in isotropic, spatially homogeneous cosmological models of arbitrary space curvature. The unperturbed models contain both matter and radiation. An explicit third-order equation is obtained for the time development of the perturbations, and it is shown that one of the solutions is not covariantly defined. The two remaining solutions are compared with existing solutions for the limiting cases of radiation-filled and dust-filled models. The results ofBonnor's (1957) Newtonian analysis are shown to be a valid limiting case of our equation when the pressurep is finite, but small compared with the densityp timesc 2.A detailed analysis is given of a model containing coupled radiation (p=pc 2/3) and dust (p=0). It is shown that density perturbations with long wavelengths are unstable (with slow growth rate) for all time. The instability exists because for a long-wavelength disturbance, the time scale governing the propagation of pressure effects (which stabilize perturbations) is longer than the time scale for which pressure falls to the point of ineffectiveness. The present value of the critical wavelength is 60 Mpc in models based on flat space sections in which the present background radiation temperature is 3 °K.The research reported herein was supported in part by the Atomic Energy Commission under contract number AT(11-1)-34, Project Agreement No. 125, and by the National Science Foundation, under Grant GP-4975.  相似文献   

15.
We model a compact relativistic body with anisotropic pressures in the presence of an electric field. The equation of state is barotropic, with a linear relationship between the radial pressure and the energy density. Simple exact models of the Einstein–Maxwell equations are generated. A graphical analysis indicates that the matter and electromagnetic variables are well behaved. In particular, the proper charge density is regular for certain parameter values at the stellar center unlike earlier anisotropic models in the presence of charge. We show that the electric field affects the mass of stellar objects and the observed mass for a particular binary pulsar is regained. Our models contain previous results of anisotropic charged matter with a linear equation of state for special parameter values.  相似文献   

16.
Anisotropic hydrodynamic equations for differentially rotating collisionless stellar systems are derived. These equations can describe the evolution of the systems in a time span longer than their rotation periods.As a by-product of derivation of hydrodynamic equations, the well-known relation that the ratio of the principal axes of the velocity ellipse in a differentially rotating stellar disk is [B/(B-A)]1/2 is re-found if the system is in a purely circular rotation, whereA andB are the Oort's constants. In addition, we find a systematic mean motion superposed on a purely circular differential rotation makes the directions of axes of the velocity ellipse deviate from the radial and the transverse direction. The observed deviation of directions of axes in our neighbourhood in the Galaxy can be explained if in the mean motion superposed on a purely circular differential rotatin the gas of stars near us is compressed in the radial direction or rarefied in the transverse directions, with irregularities of the order of 5 km/sec in amplitude of velocity and 1 kpc in size. These magnitudes of irregularities agree with those actually observed or with those anticipated from other theoretical considerations.  相似文献   

17.
We use the results from recent computations of updated non-linear convective pulsating models to constrain the distance modulus of Galactic globular clusters through the observed periods of first-overtone (RR c ) pulsators. The resulting relation between the mean absolute magnitude of RR Lyrae stars 〈 M V (RR)〉 and the heavy element content [Fe/H] appears well in the range of several previous empirical calibrations, but with a non-linear dependence on [Fe/H] so that the slope of the relation increases when moving towards larger metallicities. On this ground, our results suggest that metal-poor ([Fe/H]<−1.5) and metal-rich ([Fe/H]>−1.5) variables follow two different linear 〈 M V (RR)〉−[Fe/H] relations. Application to RR Lyrae stars in the metal-poor globular clusters of the Large Magellanic Cloud (LMC) provides an LMC distance modulus of the order of 18.6 mag, thus supporting the 'long' distance scale. The comparison with recent predictions based on updated stellar evolution theory is briefly presented and discussed.  相似文献   

18.
The formation of Zr I and Zr II lines in stellar atmospheres under non-LTE conditions has been considered for the first time. A model zirconium atom has been composed using 148 Zr I levels, 772 Zr II levels, and the ground Zr III state. Non-LTE calculations have been performed for model atmospheres with T eff = 5500 and 6000 K, log g = 2.0 and 4.0, [M/H] = −3, −2, −1, 0. In the entire investigated range of parameters, the Zr I levels are shown to be underpopulated relative to their LTE populations in the line formation region. In contrast, the excited Zr II levels are overpopulated, while the ground state and lower excited levels of Zr II retain their LTE populations. Since the non-LTE effects cause the Zr I and Zr II spectral lines being investigated to weaken, the non-LTE corrections to the abundance derived from Zr I and Zr II lines are positive. For Zr II lines, they increase with decreasing metallicity and surface gravity up to 0.34 dex for the model with T eff = 5500, log g = 2.0, and [M/H] = −2. The non-LTE effects depend weakly on temperature. The non-LTE corrections for Zr I lines reach 0.33 dex for solar-metallicity models. Zr I and Zr II lines in the solar spectrum have been analyzed. The non-LTE zirconium abundances derived from lines in the two ionization stages are shown to agree between themselves within the error limits, while the LTE abundance difference is 0.28 dex. The zirconium abundance in the solar atmosphere (averaged over Zr I and Zr II lines) is log ɛZr,⊙ = 2.63 ± 0.07.  相似文献   

19.
Wolf-Rayet stars     
This paper reviews the current status of knowledge regarding the basic physical and chemical properties of Wolf-Rayet stars; their overall mass loss and stellar wind characteristics and current ideas about their evolutionary status. WR stars are believed to be the evolved descendents of massive O-type stars, in which extensive mass loss reveals successive stages of nuclear processed material: WN stars the products of interior CNO-cycle hydrogen burning, and WC and WO stars the products of interior helium burning. Recent stellar evolution models, particularly those incorporating internal mixing, predict results which are in good accord with the different chemical compositions observationally inferred for WN, WC and WO stars. WR stars exhibit the highest levels of mass loss amongst earlytype stars: mass loss rates, typically, lie in the range [1–10]×10−5 M yr−1. Radiation pressure-driven winds incorporating multi-scattering in high ionisation-stratified winds may cause these levels, but additional mechanisms may also be needed.  相似文献   

20.
Enhanced unity in binary system observables models is discussed, including development strategy and connections between morphology and solutions. Distance estimation can be made direct (one step) via simultaneous light/velocity solutions that incorporate a simple flux-scaling procedure. Potential importance of time-variable polarization work is emphasized, especially for Algols, with mention of needed improvements in polarimetric analysis and reporting of data. Recent developments in general all-data (light, velocity, etc.) ephemerides are reviewed, with projections for further generalization, and ideas and formalisms for analysis of period change events (perhaps discontinuous) are introduced. Advantages and practical problems of unified [light, velocity, pulse arrival time] analyses for X-ray binaries, possibly constrained by measured X-ray eclipse durations, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号