首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two theoretical models, spherical and cylindrical, of propagation of shockwaves with varying energy in a rotating, magneto-radiative,self-gravitating non-uniform atmosphere have been developed. Subsequently,a comparison between the two models has been drawn with the aid ofvariation of flow variables with distance graphically. Significant is thedifference between two models, when one observes the variations of radialvelocity, pressure, mass, radiation flux, magnetic field and energy withdistance. Also, the respective influences of radiation flux, magneticfield and rotational velocity on the variations of the flow variables havebeen studied.  相似文献   

2.
The propagation of plane magnetogasdynamic shock waves in an optically-thin grey atmosphere of non-uniform density has been discussed by the use of the similarity method, by use of Planck's diffusion approximation. The distribution of pressure, density, magnetic field, velocity, temperature, and radiation flux have been illustrated through graphs. The numerical integration has been done on a DEC-1090 computer under a RKGS programme.  相似文献   

3.
The orbital and attitude dynamics of uncontrolled Earth orbiting objects are perturbed by a variety of sources. In research, emphasis has been put on operational space vehicles. Operational satellites typically have a relatively compact shape, and hence, a low area-to-mass ratio (AMR), and are in most cases actively or passively attitude stabilized. This enables one to treat the orbit and attitude propagation as decoupled problems, and in many cases the attitude dynamics can be neglected completely. The situation is different for space debris objects, which are in an uncontrolled attitude state. Furthermore, the assumption that a steady-state attitude motion can be averaged over data reduction intervals may no longer be valid. Additionally, a subset of the debris objects have significantly high area-to-mass ratio (HAMR) values, resulting in highly perturbed orbits, e.g. by solar radiation pressure, even if a stable AMR value is assumed. Note, this assumption implies a steady-state attitude such that the average cross-sectional area exposed to the sun is close to constant. Time-varying solar radiation pressure accelerations due to attitude variations will result in un-modeled errors in the state propagation. This work investigates the evolution of the coupled attitude and orbit motion of HAMR objects. Standardized pieces of multilayer insulation (MLI) are simulated in a near geosynchronous orbits. It is assumed that the objects are rigid bodies and are in uncontrolled attitude states. The integrated effects of the Earth gravitational field and solar radiation pressure on the attitude motion are investigated. The light curves that represent the observed brightness variations over time in a specific viewing direction are extracted. A sensor model is utilized to generate light curves with visibility constraints and magnitude uncertainties as observed by a standard ground based telescope. The photometric models will be needed when combining photometric and astrometric observations for estimation of orbit and attitude dynamics of non-resolved space objects.  相似文献   

4.
In this paper self-similar solutions have been investigated for the propagation of axisymmetric radiative gasdynamic shocks caused by an explosion into an inhomogeneous ideal gas permeated by a current free azimuthal magnetic field. The effects of radiation flux and magnetic field together have been seen in the region of interest on the other flow variables. The total energy of the flow between the inner expanding surface and the shock is taken to be dependent on shock radius obeying a power law. The radiative pressure and energy have been neglected.  相似文献   

5.
In the present paper self-similar solutions have been investigated for the propagation of piston driven, radiative gas-dynamic shocks into an inhomogeneous ideal gas permeated by a current free azimuthal magnetic field for spherical symmetry. The effects of radiation flux and magnetic field together have been seen in the region of interest on the other flow variables. The total energy of the flow between the piston and the shock is taken to be dependent on the shock radius obeying a power law. The radiative pressure and energy have been neglected. This problem is more general than the others done so far. The word piston implies some means to drive plasma radially onwards.  相似文献   

6.
This paper introduces and combines for the first time two techniques to allow long-term density propagation in astrodynamics. First, we introduce an efficient method for the propagation of phase space densities based on differential algebra (DA) techniques. Second, this DA density propagator is used in combination with a DA implementation of the averaged orbital dynamics through semi-analytical methods. This approach combines the power of orbit averaging with the efficiency of DA techniques. While the DA-based method for the propagation of densities introduced in this paper is independent of the dynamical system under consideration, the particular combination of DA techniques with averaged equations of motion yields a fast and accurate technique to propagate large clouds of initial conditions and their associated probability density functions very efficiently for long time. This enables the study of the long-term behavior of particles subjected to the given dynamics. To demonstrate the effectiveness of the proposed approach, the evolution of a cloud of high area-to-mass objects in Medium Earth Orbit is reproduced considering the effects of solar radiation pressure, the Earth’s oblateness and luni-solar perturbations. The method can propagate 10,000 random fragments and their density for 1 year within a few seconds on a common desktop PC.  相似文献   

7.
The propagation of weak waves has been studied by taking into account the influence of thermal radiative field. The singular surface theory is used to determine the modes of wave propagation and to evaluate the behaviour at the wave head. The effects of thermal radiation, conduction and the initial wave front curvature on the nonlinear breaking of weak waves are discussed. It is concluded that, under the thermal radiation effects, the shock wave formation is either disallowed or delayed. On the other hand, the thermal conduction effects destabilize the waves.  相似文献   

8.
We discuss some details of the cloud coverage aspects of the albedo effect — the pressure of the radiation reflected by the Earth — on the motion of an artificial satellite. We focus on modeling of the Earth's surface reflection and propagation of the radiation through the atmosphere. We adopt analytical models of these phenomena from radiative transfer theory, in contrast to earlier approaches, based on the fitting of satellite photometry data. We perform several computations based on the accepted models for the ERS-1 and MACEK satellites to test the hierarchy of importance of the effects investigated. In the case of the MACEK mission (which carried a precision accelerometer on board) this information might be essential when interpreting the data.  相似文献   

9.
O. Bschorr 《Solar physics》1982,79(2):327-331
In addition to the heating the corona by sound waves, there exists a radiation pressure caused by the absorption of acoustic waves as well as plasma waves. Whereas in the hydrostatic balance of the solar atmosphere, the light pressure can be neglected, the radiation pressure due to acoustic waves and Alfvén waves is much higher and has to be taken into account.In the solar atmosphere, the acoustic radiation pressure is generated by (i) absorption of sound energy, (ii) reflection of sound energy, and (iii) change of the sound velocity.The radiation pressure caused by absorption is dominating within the solar corona. The radiation pressure caused by reflection and the wave velocity change probably produce a pressure inversion in the transition zone between chromosphere and corona. Furthermore, the spicule phenomena are due to instationary radiation pressure.  相似文献   

10.
During the nineteenth century, it was common for physicists to believe in the existence of a material vacuum composed of an incompressible fluid that fills the whole universe. This fluid was called the aether. Its original purpose was to provide an elastic tenuous medium for light propagation through space. Although it is well understood today that no such medium is needed for light propagation, the existence of a cosmic aether medium in space is still possible and its physical properties can be understood on models of cosmology that have nothing to do with Big-Bang cosmology. It is possible that electromagnetic radiation emitted by the cosmic aether medium has already been detected. The low-frequency electromagnetic radiation emitted by the aether is called the cosmic microwave background radiation. The present study outlines a model for an aether medium that explains the genesis of the microwave background radiation in a closed static (nonexpanding) universe. It is shown that the spectrum of the microwave background radiation is a perfect blackbody with a temperature T rad=2.77 K in harmony with the perfect cosmological principle. It is further shown that the aether medium is opaque at radio and microwave frequencies. This particular feature of the model does not contradict any observations regarding the existence of distant radio galaxies and quasars.  相似文献   

11.
A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfvén waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.  相似文献   

12.
In this paper propagation of spherical shock waves with radiation heat flux is considered in an exponentially increasing medium. The shock wave moves with variable velocity and the total energy of the wave is variable. For different values of radiation parameter, the numerical solution has been made and the nature of the field variables are illustrated by the tables.  相似文献   

13.
Optical properties of spheroidal particles   总被引:1,自引:0,他引:1  
A new exact solution of the diffraction problem for the homogeneous spheroid on the basis of the method of separation of variables is given. This solution is considerably more efficient than the one of Asano and Yamamoto from the computational point of view. The expressions for various characteristics of the scattered radiation are obtained. The radiation pressure on spheroidal particles is considered taking into account the radial and transversal components. The method of calculations and various tests, which were used to control the computer programs, are described. Numerical results for forward and arbitrary angles scattering by prolate and oblate spheroids with the refractive indices typical for ice and silicates are presented. The dependence of the results on the propagation direction and the polarization of the incident radiation, size of particle and its aspect ratio are examined. The asymptotics for the characteristics of the scattered radiation for the extremely prolate and extremely oblate spheroids are derived. The range of the validity of these approximations is studied. Astrophysical applications include: a) the calculations of the interstellar extinction, interstellar linear and circular polarization curves for the ensemble of partially oriented spheroidal grains, and b) the consideration of the profiles and polarization of the interstellar feature 2200 for the partially oriented graphite spheroids. Appendices contain the expressions for integrals of products of the angular spheroidal functions and the asymptotics for the oblate spheroidal functions.  相似文献   

14.
15.
An exact similarity solution for a spherical magnetogasdynamic shock is obtained in the case when radiation energy, radiation pressure and radiative heat flux are important. The total energy of the shock wave increase with time. We have shown that due to the magnetic field the flow variables are considerably changed. Also, due to increases in radiation pressure number the radiation flux is increased.  相似文献   

16.
《Icarus》1987,71(3):472-477
Sodium atoms in the atmosphere of Mercury can be accelarated by solar radiation pressure, and several authors have suggested that radiation pressure could sweep sodium off the planet, provided that the sodium is nonthermal, with velocities in excess of 2.1 km/sec. As a consequence, the sodium abundance might be expected to decrease as the radiation pressure increases. We have measured the average sodium abundance over a range of solar radiation pressures and found that the sodium abundance does decrease with increasing radiation pressure. However, high-resolution line profile measurements of the sodium emission show that little, if any of the sodium is nonthermal, with the bulk at a temperature approximating that of the surface. Models which assume that the bulk of the sodium is nonthermal are ruled out. Possible explanations for the observed variation are (1) that radiation pressure sweeps away transient high-velocity sodium atoms generated upon meteoric material impacts, thus reducing the supply rate of sodium, or (2) that the accommodation coefficient of sodium for surface interactions is less than unity, so that radiation pressure can effectively push sodium to the dark side of the planet, where it cannot be detected by scattered sunlight.  相似文献   

17.
The evolution of the periodic orbits around the collinear equilibrium positions, belonging to the Strömgren families a, b and c, with the radiation pressure parameter of the more massive body is studied in the Sun-Jupiter system. These families are determined for a single value of the radiation pressure parameter and particularly when the radiation force of the more massive body is equal to one half of the gravitational attraction. Then the critical stability orbits of each family are transferred with the radiation parameter. The stability of each periodic solution is also studied.  相似文献   

18.
We apply the ballistic particle-cluster and cluster-cluster aggregation of spherical monomers identical in size and material composition to study the effect of the particle's shape and structure on the radiation pressure force acting on circumstellar dust particles. Furthermore, the influence of the material composition on the radiation pressure is investigated based on the assumption that the constituents of dust aggregates are composed of either silicate or carbon.We show that the ratio of radiation pressure to stellar gravity in the radial direction from a star is weaker for aggregates than for homogeneous spherical grains in the radius range of submicron or less. Therefore fluffy dust particles of submicron radius have a longer dynamical lifetime, compared to compact spherical particles. We also show that the nonradial component of the radiation pressure force can reach the same order of magnitude as the radial component of the radiation pressure reduced by stellar gravity for aggregates of submicron or less in size. This non-radial component of the radiation pressure may yield a component of random motion along the trajectories of the particles.  相似文献   

19.
Gravitational radiation in a variant of the bimetric theory of gravitation is investigated in the case of slow motions and weak fields. Questions of the propagation velocity, polarization, and generation of a weak gravitational wave are considered. The Peters-Matthews coefficients and the dipole emission coefficient are determined.  相似文献   

20.
O. Bschorr 《Solar physics》1988,116(2):401-404
In a gas heat transport is accompanied by the transport of momentum. The momentum change that accompanies a spatial change in heat flow - this is the radiometer force - results in a pressure gradient. This effect is analogous to the radiation pressure of wavemechanical energy transport. The radiometer pressure increases with temperature and temperature gradient but is independent of the gas density. In the transition zone and in the solar corona the radiometer forces have a definite effect on the pressure balance within the solar atmosphere. In this note the relationship between the radiometer pressure and the acoustic radiation pressure in the solar atmosphere is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号