首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
An established numerical tidal model has been used to investigate the impact of various sea-level rise (SLR) scenarios, as well as SLR in combination with large-scale tidal power plants on European shelf tidal dynamics. Even moderate and realistic levels of future SLR are shown to have significant impacts on the tidal dynamics of the area. These changes are further enhanced when SLR and tidal power plants are considered in combination, resulting in changes to tidal amplitudes, currents and associated tidal dissipation and bed shear stresses. Sea-level rise is the dominant influence on any far-field impacts, whereas tidal power plants are shown to have the prevailing influence over any changes close to the point of energy extraction. The spatial extent of the impacts of energy extraction is shown to be affected by the sea level when more than one tidal power plant in the Irish Sea was considered. Different ways to implement SLR in the model are also discussed and shown to be of great significance for the response of the tides.  相似文献   

2.
Tidal velocity asymmetry at inlets influences sediment transport pathways and the morphological evolution of estuaries/lagoons connected to these inlets. Generation of overtides is generally seen as the main cause of tidal velocity asymmetry. Whilst majority of studies examining tidal velocity asymmetry have concentrated on inlets located in semi-diurnal tidal regimes, here, attention is focused on the processes responsible for causing tidal velocity asymmetry at inlets located in diurnal tidal regimes. Using field data collected from three West Australian inlets, it is shown that tidal velocity asymmetry in this type of system is caused by the oceanic tidal conditions. It is also shown that in these systems, the occurrence of flood/ebb dominance can be determined using oceanic tidal elevations, which are more readily available than inlet current data. In contrast to semi-diurnal systems the flood/ebb dominance in diurnal systems varies throughout the year depending on the phase angle relationship between the significant oceanic tidal constituents. The net sediment transport in to/out of these systems, which determines the morphological evolution of the systems, is shown to be governed more by the degree of tidal velocity asymmetry rather than the number of occurrences or duration of flood/ebb-dominant periods.  相似文献   

3.
The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure–temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal (K 1, O 1, P 1, Q 1) and four semi-diurnal (M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s?1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.  相似文献   

4.
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing.  相似文献   

5.
 In this paper we use a combination of numerical modeling and data analysis to gain a better understanding of the major characteristics of the circulation in the East Frisian Wadden Sea. In particular, we concentrate on the asymmetry of the tidal wave and its modulation in the coastal area, which results in a complex pattern of responses to the sea-level forcing from the North Sea. The numerical simulations are based on the 3-D primitive equation General Estuarine Transport Model (GETM) with a horizontal resolution of 200 m and terrain-following vertical coordinates. The model is forced at its open boundaries with sea-level data from an operational model for the German Bight (German Hydrographic Office). The validation data for our model simulations include time series of tidal gauge data and surface currents measured at a pile in the back-barrier basin of the Island Langeoog, as well as several ADCP transects in the Accumer Ee tidal inlet. Circulation and turbulence characteristics are investigated for typical situations driven by spring and neap tides, and the analysis is focused on dominating temporal and spatial patterns. By investigating the response of five back-barrier basins with rather different morphologies to external forcing, an attempt is made to elucidate the dominating physical balances controlling the circulation in the individual sub-basins. It is demonstrated that the friction at the seabed tends to slow down the tidal signal in the shallow water. This leads to the establishment of flood dominance in the shallow sea north of the barrier islands. South of the islands, where the water volume of the channels at low tide is smaller than the tidal prism, the asymmetry of the tidal signal is shifted towards ebb dominance, a feature which is particularly pronounced at spring tide. At the northern open boundary, the tidal wave propagating from west to east generates a sea-level difference of ∼1 m along the boundary, and thereby triggers vigorous alongshore currents. The frictional control in the model is located in the inlets, as well as along the northern boundary. The correlation between velocity and turbulent kinetic energy tends to the establishment of a net southward transport, giving theoretical support to the observed accumulation of sediments on the intertidal flats. Weak turbulence along the northern shores of the barrier islands and the small magnitude of the residual currents there promote accumulation of suspended matter in these areas, although wave action will generally counteract this effect. Received: 29 May 2002 / Accepted: 26 September 2002 Responsible Editor: Jean-Marie Beckers Acknowledgements We are indebted to S. Dick for providing the data from the operational model of BSH and to B. Flemming for the useful discussions. The topography data and Fig. 1 have been prepared in cooperation with F. Meyer. Figure 2 has been prepared by G. Brink-Spalink. We also thank for the comments from an anonymous reviewer which helped to improve our paper.  相似文献   

6.
Abstract

This work presents a method for calculating the contributions of sea-level rise and urban growth to flood risk in coastal flood plains. The method consists of hydraulic/hydrological, urban growth and flood-damage quantification modules. The hydraulic/hydrological module estimates peak annual flows to generate flood stages impacted by sea-level rise within flood plains. A model for urban growth predicts patterns of urbanization within flood plains over the period 2010–2050. The flood-damage quantification module merges flood maps and urbanization predictions to calculate the expected annual flood damage (EAFD) for given scenarios of sea-level rise. The method is illustrated with an application to the Tijuana River of southern California, USA, and northwestern Mexico, where the EAFD is predicted to increase by over US$100 million because of sea-level rise of 0.25–1.0 m and urban growth by the year 2050. It is shown that urbanization plays a principal role in increasing the EAFD in the study area for the range of sea-level rise considered.

Editor Z.W. Kundzewicz

Citation Garcia, E.S. and Loáiciga, H.A., 2013. Sea-level rise and flooding in coastal riverine flood plains. Hydrological Sciences Journal, 59 (1), 204–220.  相似文献   

7.
The potential for rapid coastline modification in the face of sea-level rise or other stressors is alarming, since coasts are often densely populated and support valuable infrastructure. In addition to coastal submergence, nutrient-related water pollution is a growing concern for coastal wetlands. Previous studies found that the Suspended Sediment Concentration (SSC) of coastal wetlands acts as a first-order control of their sustainability, but SSC dynamics are poorly understood. Our study focuses on the Virginia Coast Reserve (VCR) Long Term Ecological Research (LTER) site, a shallow multiple tidal inlet system in the USA. We apply numerical modelling (Delft3D-SWAN) and subsequent analyses to determine SSC dynamics within the VCR. In particular, we consider two important controls on SSC in the system: vegetation (seagrass and salt marsh) and offshore waves. Our results show that vegetation colonies and increased wave energy lengthen water residence time. The reduction in the tidal prism decreases SSC export from the bay via tidal inlets, leading to increased sediment retention in the bay. We found that alongshore currents can enhance lagoon SSC by importing fine sediments from an adjacent inlet along the coastline. Our numerical experiments on vegetation seasonality can improve the understanding of wave climate impact on coastal bay sediment budget. Offshore waves increase sediment export from coastal bays, particularly during winter seasons with low vegetation density. Therefore, our study can help managers and stakeholders to understand how to implement restoration strategies for the VCR. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
Among the different types of tidal inlets, wave-dominated inlets have been subjected to few quantitative studies, so that the physical processes controlling their dynamics are not fully understood. This study presents the application of a coastal area morphodynamic modeling system to a wave-dominated inlet (Óbidos Inlet, western coast of Portugal), in order to investigate the physical processes responsible for channel development during fair weather conditions and shoaling during periods of larger waves. The modeling system was able to reproduce reasonably well morphological changes at the Óbidos Inlet and subsequent tidal amplitude evolutions inside the lagoon over a period which includes 3 months of fair weather conditions, followed by 2 months representative of winter conditions. The inlet development during fair weather conditions was attributed to the strong ebb-dominance of the main channel without waves, enhanced by the combination of shallow channels and a meso-tidal range. The inlet infilling during the maritime winter was attributed to three main wave-induced mechanisms: (1) the onshore component of wave radiation stresse gradients, which is not fully compensated by the wave-induced setup in front of the inlet; (2) the acceleration and convergence of longshore transport toward the inlet, due to the presence of a strong lateral gradient in free surface elevation on both sides of the inlet, and, to a smaller extent, to wave refraction around the ebb-delta; and (3) the increase in mean water level inside the lagoon, which reduces tidal asymmetry and subsequent ebb-dominance.  相似文献   

9.
Salut-Mengabong Lagoon is located at the west coast of Sabah facing the South China Sea. At the bay side of the main inlet the lagoon splits into Salut and Mengabong Channels. Sediment dynamics at the inlets of the lagoon have recently received considerable attention. But any direct measurement of hydrodynamics and sediment flux are yet to be well documented. This study covers the field measurements of current velocity, water flux, suspended sediment concentration and sediment flux across the three transects (main inlet, Salut entrance and Mengkabong entrance) during typical spring and neap tidal cycles in southwest monsoon and northeast monsoon. Temporal variations and time-averaged values of measured parameters are discussed. The inlets of Salut-Mengkabong Lagoon are found to be ebb-dominated. The time-averaged velocities during spring tidal measurements are found to be higher in the main inlet followed by Mengkabong entrance and Salut entrance. Suspended sediment concentration and sediment fluxes are substantially higher in spring tidal cycles compared to the same in neap tidal cycles. During spring tidal cycles, ebb tidal sediment fluxes are higher than the flood tidal fluxes. The ebb dominated flux across the main inlet led to the large ebb shoal.  相似文献   

10.
In parts of North America and Europe, present and future sedimentary deficits translate into major areal losses of coastal salt marsh. Physically based simulations of medium- to long-term adjustment to accelerated sea-level rise are few, partly due to the difficulty in extrapolating imperfectly understood sedimentation parameters. This paper outlines the implementation and application of a simple one-dimensional mass balance model designed to simulate the vertical adjustment of predominantly minerogenic marsh surfaces to various combinations of sediment supply, tidal levels and regional subsidence. Two aspects of marsh growth are examined, with reference to sites on the macro-tidal north Norfolk coast, U.K.: (i) historical marsh growth under a scenario of effective (long-term) eustatic stability but slow regional subsidence; and (ii) marsh response to various non-linear eustatic rise scenarios for the next century. In contrast to more organogenic North American marshes, sedimentation rates in Norfolk are strongly time-dependent. Where the overall sediment budget is so closely linked to marsh age and relative elevation, some form of numerical simulation offers a preferred means of predicting the impact of accelerated sea-level rise. Simulations performed here show that only the most dramatic eustatic scenarios result in ecological ‘drowning’ and reversion to tidal flat within the conventional 2100 prediction interval. Currently favoured scenarios give rise to accretionary deficits which are clearly sustainable in the short-term, albeit at the expense of increased inundation frequency and consequent changes in the distribution of marsh flora and fauna.  相似文献   

11.
This contribution aims to model the dominant processes that control sedimentation within the ocean inlet to intermittently open–closed coastal lagoons; focussing on the role of infilling, backfilling and morphodynamic feedback. The key elements that have been included in the present model are: (1) the delivery of sediment to the mouth of the estuary by littoral processes; (2) sediment transport processes within the inlet due to non-linear tidal flow; and (3) the down-slope diffusion of sediment. The model discussed here includes a simple one-dimensional (1-D), non-linear flow parameterisation that predicts the spatial variability in the magnitude and non-linearity of the tidal flow. The predicted third and fourth velocity moments are used to drive a morphodynamic module. Down-slope diffusion of sediment is dealt with in a separate diffusion term in the bed-evolution equation. Feedback between the evolving morphology and the flow field are integral to the model. Numerical simulations are used to investigate different modes of evolution for this type of inlet system. Inlet closure due to infilling is critically controlled by the balance between sediment addition at the mouth due to littoral processes and the removal of sediment by non-linear tidal flow. Rapid widening or deepening of the inlet at its landward margin leads to the deposition of a flood shoal. Under conditions of high sedimentation (and low diffusion) the flood shoal can become sufficiently well developed to present a physical barrier to sediment entering the lagoon. Under these circumstances backfilling can become significant. The infilling and backfilling processes are ameliorated by efficient down-slope diffusion which is controlled in the present model by a diffusion parameter, D. High diffusion coefficients slow inlet closure and allow sediment to propagate further into the lagoon.  相似文献   

12.
The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010–2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.  相似文献   

13.
Sea level change is an important consequence of climate change due to its impact on society and ecosystems. Analyses of tide-gauge data have indicated that the global sea level has risen during the 20th century and several studies predict that the mean sea level will continue to rise during the 21st century, intensifying coastal hazards worldwide. In Portugal, the Ria de Aveiro is expected to be one of the regions most affected by sea level change.The main aim of this study is to evaluate the potential impacts of the mean sea level change on the hydrodynamics and morphodynamics of the Ria de Aveiro. With this purpose, local mean sea level change was projected for the period 2091-2100 relative to 1980-1999, for different Special Report on Emission Scenarios (SRES) scenarios developed by the Intergovernmental Panel on Climate Change (IPCC). These projections revealed an increase in the mean sea level between 0.28 m under scenario B1 and 0.42 m under scenario A2.The results obtained for sea level rise scenario A2 projection were used to force the morphodynamic model MORSYS2D, previously implemented for the Ria de Aveiro. The modelling results were compared with model forecasts for the present sea level. The residual sediment transport and its balance at the lagoon inlet were computed and analysed for both situations. While the residual sediment transport is generally seaward, sediments tend to deposit inside the inlet due to the weak sediment transport at its mouth. The direction of the residual flux will not change with the sea level rise, but sediment fluxes will intensify, and accretion inside the inlet will increase.The rise in mean sea level will also affect the lagoon hydrodynamics. The tidal prism at the lagoon mouth will increase by about 28% in spring tide. In the lower lagoon only a slight increase of the tidal asymmetry is predicted.  相似文献   

14.
van Maanen  Barend  Coco  Giovanni  Bryan  Karin R.  Friedrichs  Carl T. 《Ocean Dynamics》2013,63(11):1249-1262

Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.

  相似文献   

15.
Modeling the morphodynamic response of tidal embayments to sea-level rise   总被引:1,自引:1,他引:0  
Sea-level rise has a strong influence on tidal systems, and a major focus of climate change effect studies is to predict the future state of these environmental systems. Here, we used a model to simulate the morphological evolution of tidal embayments and to explore their response to a rising sea level. The model was first used to reproduce the formation of channels and intertidal flats under a stable mean water level in an idealised and initially unchannelled tidal basin. A gradual rise in sea level was imposed once a well-developed channel network had formed. Simulations were conducted with different sea-level rise rates and tidal ranges. Sea-level rise forced headward erosion of the tidal channels, driving a landward expansion of the channel network and channel development in the previously non-inundated part of the basin. Simultaneously, an increase in channel drainage width in the lower part of the basin occurred and a decrease in the overall fraction of the basin occupied by channels could be observed. Sea-level rise thus altered important characteristics of the tidal channel network. Some intertidal areas were maintained despite a rising sea level. However, the size, shape, and location of the intertidal areas changed. In addition, sea-level rise affected the exchange of sediment between the different morphological elements. A shift from exporting to importing sediment as well as a reinforcement of the existing sediment export was observed for the simulations performed here. Sediment erosion in the inlet and the offshore transport of sediment was enhanced, resulting in the expansion of the ebb-tidal delta. Our model results further emphasise that tidal embayments can exhibit contrasting responses to sea-level rise.  相似文献   

16.
Sea-level rise, as a result of global warming, may lead to more natural disasters in coastal regions where there are substantial aggregations of population and property. Thus, this paper focuses on the impact of sea-level rise on the recurrence periods of extreme water levels fitted using the Pearson type III (P-III) model. Current extreme water levels are calculated using observational data, including astronomical high tides and storm surges, while future extreme water levels are determined by superposing scenario data of sea-level rise onto current extreme water levels. On the basis of a case study using data from Shandong Province, China, results indicated that sea-level rise would significantly shorten the recurrence periods of extreme water levels, especially under higher representative concentration pathway (RCP) scenarios. Results showed that by the middle of the century, 100-year current extreme water levels for all stations would translate into once in 15–30 years under RCP 2.6, and once in ten to 25 years under RCP 8.5. Most seriously, the currently low probability event of a 1000-year recurrence would become common, occurring nearly every 10 years by 2100, based on projections under RCP 8.5. Therefore, according to this study, corresponding risk to coastlines could well be increase in future, as the recurrence periods of extreme water levels would be shortened with climate change.  相似文献   

17.
Tidal inlets are extremely dynamic, as a result of an often delicate balance between the effects of tides, waves and other forcings. Since the morphology of these inlets can affect navigation, water quality and ecosystem dynamics, there is a clear need to anticipate their evolution in order to promote adequate management decisions. Over decadal time scales, the position and size of tidal inlets are expected to evolve with the conditions that affect them, for instance as a result of climate change. A process-based morphodynamic modeling system is validated and used to analyze the effects of sea level rise, an expected shift in the wave direction and the reduction of the upper lagoon surface area by sedimentation on a small tidal inlet (Óbidos lagoon, Portugal). A new approach to define yearly wave regimes is first developed, which includes a seasonal behavior, random inter-annual variability and the possibility to extrapolate trends. Once validated, this approach is used to produce yearly time series of wave spectra for the present and for the end of the 21st century, considering the local rotation trends computed using hindcast results for the past 57 years. Predictions of the mean sea level for 2100 are based on previous studies, while the bathymetry of the upper lagoon for the same year is obtained by extrapolation of past trends. Results show, and data confirm, that the Óbidos lagoon inlet has three stable configurations, largely determined by the inter-annual variations in the wave characteristics. Both sea level rise and the reduction of the lagoon surface area will promote the accretion of the inlet. In contrast, the predicted rotation of the wave regime, within foreseeable limits, will have a negligible impact on the inlet morphology.  相似文献   

18.
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.  相似文献   

19.
Ocean Dynamics - The climatic change has led to the sea-level rise (SLR), which is expected to continue based on the current industrial and human activities. Previous studies indicated that most of...  相似文献   

20.
Back-barrier tidal flat systems are characterized by basins and inlets through which water is exchanged with the coastal sea by tidal water movements. The hydrographic and morphometric properties at the inlets and in the basins vary considerably, but there is little information available how biogeochemical properties in the water column at these different sites respond to these differences. Therefore, we investigated tidal dynamics of suspended particulate matter (SPM), particulate and dissolved organic carbon (DOC), chlorophyll a, phaeopigments, numbers of particle-associated (PA) and free-living bacteria (FL), bacterial biomass production, and concentrations of dissolved manganese (Mn). Samples were taken at the surface, a mid-depth and 1 m above the bottom at a fixed station at the inlet and in the basin of the Spiekeroog back-barrier tidal flat system in the German Wadden Sea. Five tidal cycles representative for typical seasonal situations, January (winter), April and May (late spring bloom), July (summer), and November (late fall) were studied in 2005 and 2006. In July, processes related to phytoplankton dynamics and bacterial decomposition were much more enhanced in the basin, whereas in April, these processes were enhanced at the inlet but were particularly low within the basin itself. The low values within the basin were a result of the settled phytoplankton spring bloom and represent a rather short period at the decline of this bloom. In November and January, differences were much less pronounced than during the growing season and restricted mainly to SPM and PA bacteria, exhibiting higher values in the basin. FL bacteria, DOC, and dissolved Mn exhibited different patterns and much less differences between the two stations, indicating that biogeochemical processes in the dissolved phase were controlled by different factors than PA biogeochemical processes. These differences reflect the retentive properties of the basin for particles and PA biogeochemical processes, particularly during the growing season, and in general emphasize the high productivity of back-barrier tidal flat systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号