首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Land change is a cause and consequence of global environmental change.Land use and land cover have changed considerably due to increasing human activities and climate change,which has become the core issue of major international research projects.This study interprets land use and land cover status and the changes within the Koshi River Basin(KRB)using Landsat remote sensing(RS)image data,and employs logistic regression model to analyze the influence of natural and socioeconomic driving forces on major land cover changes.The results showed that the areas of built-up land,bare land and forest in KRB increased from 1990 to 2015,including the largest increases in forest and the highest growth rate in construction land.Areas of glacier,grassland,sparse vegetation,shrub land,cropland,and wetland all decreased over the study period.From the perspective of driving analysis,the role of human activities in land use and land cover change is significant than climate factors.Cropland expansion is the reclamation of cropland by farmers,mainly from early deforestation.However,labor force separation,geological disasters and drought are the main factors of cropland shrinkage.The increase of forest area in India and Nepal was attributed to the government’s forest protection policies,such as Nepal’s community forestry has achieved remarkable results.The expansion and contraction of grassland were both dominated by climatic factors.The probability of grassland expansion increases with temperature and precipitation,while the probability of grassland contraction decreases with temperature and precipitation.  相似文献   

2.
《山地科学学报》2020,17(1):50-67
Uncontrolled land use land cover change(LULCC) is impacting watershed hydrology,particularly in tropical watersheds in developing countries. We assessed the extent of LULCC in the southern portion of the Nyong River basin through analysis of three land use maps in 1987, 2000 and2014. LULCC impact on hydrological variables of the Mbalmayo, Olama, Pont So'o, Messam, and Nsimi sub-watersheds of the southern portion of the Nyong River basin were evaluated by using the linear regression modeling and the Mann-Kendall test. This study reveals that dense forest cover decreased by16%, young secondary forest increased by 18%,agricultural/cropland increased by 10%, and built-up area/bare soil increased by 3% from 1987 to 2014.The decrease in dense forest cover at 0.6% per year on average was driven by indiscriminate expansion of subsistence agricultural/cropland through shifting and fallow cultivation farming systems. Nonsignificant trends in total discharge, high flows, and low flows were observed in the large sub-watersheds of Mbalmayo and Olama from 1998 to 2013 with LULCC within the watershed. In contrast, significant decreasing trends in stream discharge(up to-5.1%and-5.9%), and significant increasing trends in high flows(up to 2.1% and 6.3%), respectively, were observed in the small sub-watersheds of Pont So'o and Messam from 1998 to 2013, particularly with increase in agricultural/cropland cover and decrease in dense forest cover. However, we found nonsignificant trends in mean annual discharge and low flows for all and whole watershed with LULCC. The results reveal spatially varying trends of stream discharge, low flows and high flows among the subwatersheds with LULCC within the study watershed.The results suggest that the impacts of LULCC on watershed hydrology are easily detected in small subwatersheds than in large sub-watersheds. Therefore,the magnitude of dense forest cover loss must be significantly greater than 16% to cause significant changes and common trends in the hydrology of the sub-watersheds of the southern portion of the Nyong River basin. The Mann-Kendall and Regression approaches show appreciable potential for modelling the impacts of LULCC on the hydrology of the southern portion of the Nyong River basin and for informing forest management.  相似文献   

3.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

4.
Through the geochemical analysis of two hundred-meters cores KD4 and ZK3 from Laizhou Bay,in this study,we determined the distribution law and controlling factors of the geochemical elements.We analyzed 24 elements with respect to their R factors and major principal components,which were combined with the source discrimination functions DFCr/Th and DFCa/Al to obtain the sediment source index and its variation with depth for this area.A comparison of the changes in climate indicators suggests a clear correlation between the source and climate changes.The results show that the Yellow River and surrounding short-term rivers are the main sediment sources in this area.The PC3 of the KD4 core and PC2 of the ZK3 core(e.g.,CaO,MnO,SiO2)exhibit significant variations and reflect the relative contributions of Yellow River sources.The deposition process can be divided into six stages:in Phase I(MIS 5c–MIS 5a),the Yellow River formed,and the composition of the Yellow River had a greater influence on the sedimentary composition of the study area.In Phase II(MIS 5a–MIS 3),the sediment sources of the Yellow River and the short-term streams in this area were wavering,with the sediments derived from short-term rivers playing a more important role.In Phase III(MIS 3),with a sharp drop in temperature,the study area was in the process of retreat,and the sediment source changed from the Yellow River to short-term rivers,after which the Yellow River source material remained the main sediment source for the region.A similar process occurred three more times in Phase IV(MIS 3–MIS 2),Phase V(MIS 2–MIS 1),and Phase VI(MIS 1).With changes in climate,especially during alternating sea-land phases,the sediment source varied in marine-terrestrial-marine phases,and the changes are observed as Yellow River source-surrounding provenance-Yellow River source.However,this process of change is not synchronized with the sea-land strata alternation.  相似文献   

5.
It is important to understand how land use change impacts groundwater recharge,especially for regions that are undergoing rapid urbanization and there is limited surface water.In this study,the hydrological processes and re-charge ability of various land use types in Guishui River Basin,China(in Beijing Municipality) were analyzed.The impact of land use change was investigated based on water balance modeling,WetSpass and GIS.The results indicate that groundwater recharge accounts for only 21.16% of the precipitation,while 72.54% is lost in the form of evapotranspiration.The annual-lumped groundwater recharge rate decreases in the order of cropland,grassland,urban land,and forest.Land use change has resulted in a decrease of 4 × 106 m3 of yearly groundwater recharge in the study area,with a spatially averaged rate of 100.48 mm/yr and 98.41 mm/yr in 1980 and 2005,respectively.This variation has primarily come from an increase of urban area and rural settlements,as well as a decrease of cropland.  相似文献   

6.
Review of studies on land use and land cover change in Nepal   总被引:1,自引:0,他引:1  
Land use and land cover(LULC) in Nepal has undergone constant change over the past few decades due to major changes caused by anthropogenic and natural factors and their impacts on the national and regional environment and climate.This comprehensive review of past and present studies of land use and land cover change(LUCC) in Nepal concentrates on cropland, grassland, forest, snow/glacier cover and urban areas. While most small area studies have gathered data from different sources and research over a short period, across large areas most historical studies have been based on aerial photographs such as the Land Resource Mapping Project in 1986. The recent trend in studies in Nepal is to focus on new concepts and techniques to analyze LULC status on the basis of satellite imagery, with the help of geographic information system and remote sensing tools. Studies based on historical documents, and historical and recent spatial data on LULC, have clearly shown an increase in cropland areas in Nepal,and present results indicating different rates and magnitudes. A decrease in forest and snow/glacier coverage is reported in most studies. Little information is available on grassland and urban areas from past research. The unprecedented rate of urbanization in Nepal has led to significant urban land changes over the past 30 years. Meanwhile, long term historical LUCC research in Nepal is required for extensive work on spatially explicit reconstructions on the basis of historical and primary data collection, including LULC archives and drivers for future change.  相似文献   

7.
受社会制度变迁和气候变化的影响,哈萨克斯坦是中亚地区生态退化和草畜矛盾问题最为突出的国家。近百年来,放牧方式的改变、农业开垦的占用、加之暖干化的气候变化影响,使得哈萨克斯坦各类草地生态系统变化的时空格局具有鲜明的特点。因此,研究哈萨克斯坦草地退化的过程与机制对认识中亚地区草地生态系统对气候变化和人类活动的响应尤为重要,也是对绿色丝路建设过程中区域生态可持续发展的科学支撑。土地覆被数据是生态变化研究的基础数据,但目前广泛使用的各套全球数据集间往往存在很大的差异,这会导致对生态变化成因的认知以及对未来变化的模型模拟产生更大的不确定性。本研究从对草地类型识别的定义、空间分布的一致性和空间分布差异的原因3方面对比5类全球土地覆被数据(UMD 1992-1993、MCD12Q1 2001、GLC 2000、CCI-LC 2000、Glob Cover 2005)中哈萨克斯坦草地分布的异同,以期为哈萨克斯坦的相关研究中土地覆被数据集的选择提供依据。研究结果表明:① 分类系统中对草地类型的界定、遥感数据源、辅助分类数据、分类方法、验证数据和方法的不同是5套数据草地资源分布差异的主要原因,其中MCD12Q1数据与其他4套数据的草地分布面积相差最大;② 5套数据中草地分布都重叠(完全一致)或四套数据重叠(高度一致)的区域仅占39.66%,主要位于哈萨克斯坦典型草原带和部分半荒漠草原带;围绕典型草地分布区,空间一致性由内向外逐渐降低。5套数据完全不一致区域占26.78%,主要位于荒漠草原带;③ CCI-LC2000数据与其他几类数据的重叠区域最高,有76%的草地与5套数据的完全一致以及高度一致区重叠;在分布不一致区域中,极易造成混淆的土地覆被类型主要为旱作耕地、灌溉耕地、耕地与自然植被镶嵌体、裸地以及灌丛。  相似文献   

8.
The growth of tidal fl ats off Zhejiang coasts in southwestern China has provided substantial areas for local agriculture and construction activities. To evaluate modern and future development of tidal fl ats in the region, a good understanding of sediment sources is necessary. Previous research has concluded that the Changjiang(Yangtze) River is the dominant supplier of sediments to this part of the southeast Chinese coast, despite the fact that sediment delivery from this source has been decreased markedly in the past two decades. In this study, we investigated the sources of tidal fl at sediments, and the magnetic and geochemical properties of recent tidal fl at sediments along the Zhejiang coast were compared with those discharged from rivers. Magnetic and geochemical properties of the tidal fl at samples reveal statistically distinct sediment provenance groups. The magnetic and geochemical scatter plots show that the suspended sediment samples are naturally divided into two diff erent groups, one including the Changjiang River and Qiantang River material, and the other including the Jiaojiang, Oujiang, and Feiyun Rivers that located in the central and southern parts of the study areas. At last, a binary source of tidal fl at sediments along the Zhejiang coast was determined, with the substantial majority originating from local rivers, while a much smaller proportion emanates from the Changjiang River to the north. We conclude that the sediment contribution of the Changjiang River to tidal fl at development in the region has been markedly overestimated, with important implications for management.  相似文献   

9.
山西省土地覆盖时空变化特征及其驱动因子分析   总被引:1,自引:0,他引:1  
以遥感与GIS为技术支撑,对山西省20世纪80年代到2005年的土地覆盖进行了动态监测,并分析了土地覆盖的变化特征及其驱动因子;监测表明,山西省土地覆盖时空变化特征:(1)变化数量:城镇建设用地和农村聚落面积增加显著,草地有所增加;旱地和水浇地减少明显,森林和河湖滩地略有减少。(2)变化速度:城镇建设用地增速迅猛,沼泽和农村聚落面积增速较快;河湖滩地减少速度最快,其次,是旱地和水浇地减少速度较快。(3)空间转换:以农田和聚落之间的转换为主,另外城镇建设用地的增加包括其扩展融入的农村聚落等;典型草地的增加主要来自旱地;灌丛减少主要是转变成典型草地,其次是转变成灌丛草地;河湖滩地减少主要是变为内陆水体,再是转变成水浇地。驱动力分析表明,区域自然因素相对稳定,对土地覆盖变化的影响较小,人口、经济、农业结构调整、政策和交通等是山西省土地覆盖变化的主要驱动力。山西省土地覆盖变化的总体特征与区域经济发展、产业布局及其工业化、城市化演变的特征基本一致。  相似文献   

10.
基于改进Markov-CA模型的黄土高原土地利用多情景模拟   总被引:2,自引:0,他引:2  
土地利用/覆被的时空变化研究能为区域生态环境恢复和生态系统集成管理提供科学支持。集成Logistic回归模型、改进的Markov与FLUS模型模拟黄土高原2020—2050年3种典型情景土地利用变化。发现各情景土地利用面积变化及空间置换转移主要集中在农用地、草地和城镇用地;历史趋势延续情景下农用地减少15 205 km2,草地、城镇用地分别增加2742 km2和16 007 km2;生态保育管护情景中草地增加7076 km2,林草用地增长存在权衡关系(r主要林地-草地=-0.66),在典型区域的生态恢复管理中应加以重视;城镇发展建设情景中农用地减少20 256 km2,城镇用地增加22 032 km2,变化均达到极值,其中,南部城镇扩张与农用地减少存在强权衡关系(r农用地-城镇用地=-1)。改进的Markov-FLUS模型适用于黄土高原地区的土地利用模拟,情景分析可有效揭示区域生态保护与城镇扩张的阈值变化,为区域土地利用政策权衡管理和水土保育提供科学依据。  相似文献   

11.
The Songnen Plain in Northeast China, one of the key national bases of agricultural production, went through remarkable land use/cover changes in recent years. This study aimed to explore the long-term land use/cover changes and the effects of these changes on the environment. The Landsat-based analysis showed that, during 1986–2000, cropland, built-up land and barren land had increased, among which cropland had the largest increase of 9,198km2 with an increase rate of 7.5%. Woodland, grassland, water body and swampland had decreased correspondingly, among which grassland had the most dramatic decrease of 6,127km2 with a decrease rate of 25.6%. The transition matrix results revealed that grassland, woodland and swampland were the three main land use types converted to cropland. Climate warming created the potential environment for the conversion of grassland and swampland into cropland. Land resources policy made by central and provincial governments of China affected the pattern and intensity of land use. Land use/cover changes accompanied by climatic variation brought out a series of environmental consequences, such as sand desertification of land, land salinization and alkalinization, grassland degradation, and more frequent floods. Under this circumstance, optimized land use structure and restoration measures are needed.  相似文献   

12.
As a major sediment area in the upper Yangtze River, Jialing River basin experienced substantial land-use changes, many water conservancy projects were constructed from the 1980 s onward to promote water and soil conservation. The water and sediment yield at the watershed outlet was strongly affected by these water conservation works, including ponds and reservoirs, which should be considered in the modelling. In this study, based on the observed data of the Weicheng River catchment, the relationships between precipitation, runoff, vegetation, topography and sediment yield were analyzed, a distributed runoff and sediment yield model(WSTD-SED) was developed, and the hydrological processes of different land-use scenarios were simulated by using the model. The main results are summarized as follows: 1) there is an alternating characteristic in river channels and reservoirs in the Jialing River hilly area, with scour occurring in wet years and deposit occurring in dry years. 2) Most of the sediment deposited in river channels and reservoirs is carried off by the largest flood in the year. 3) The model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, and the WSTD-SED model could be usedto obtain qualitative estimates on the effects of land use change scenarios. 4) The modelling results suggest that a 10% increase in cropland(dry land) reforestation results in a 0.7% decrease in runoff and 1.5% decrease in sediment yield.  相似文献   

13.
The Middle Route of the South-to-North Water Diversion Project(MR-SNWDP)in China,with construction beginning in 2003,diverts water from Danjiangkou Reservoir to North China for residential,agriculture and industrial use.The water source area of the MR-SNWDP is the region that is most sensitive to and most affected by the construction of this water diversion project.In this study,we used Landsat Thematic Mapper(TM)and HJ-1 A/B images from 2000 to 2015 by an object-based approach with a hierarchical classification method for mapping land cover in the water source area.The changes in land cover were illuminated by transfer matrixes,single dynamic degree,slope zones and fractional vegetation cover(FVC).The results indicated that the area of cropland decreased by 31%and was replaced mainly by shrub over the past 15 years,whereas forest and settlements showed continuous increases of 29.2% and 77.7%,respectively.The changes in cropland were obvious in all slope zones and decreased most remarkably(–43.8%)in the slope zone above 25°.Compared to the FVC of forest and shrub,significant improvement was exhibited in the FVC of grassland,with a growth rate of 16.6%.We concluded that local policies,including economic development,water conservation and immigration resulting from the construction of the MR-SNWDP,were the main drivers of land cover changes;notably,they stimulated the substantial and rapid expansion of settlements,doubled the wetlands and drove the transformation from cropland to settlements in immigration areas.  相似文献   

14.
This paper synthesized the principal land denudation processes and their role in determining riverine suspended sediment yields(SSY) in two typical geographical environments of the Upper Yangtze River Basin in China and the Volga River Basin in Eastern Europe. In the Upper Yangtze River Basin, natural factors including topography, climate,lithology and tectonic activity are responsible for the spatial variation in the magnitude of denudation rates.Human disturbances have contributed to the temporal changes of soil erosion and fluvial SSY during the past decades. On one hand, land use change caused by deforestation and land reclamation has played an important role in the acceleration of sediment production from the central hilly area and lower Jinsha catchment; On the other hand, diverse soil conservation practices(e.g., reforestation,terracing) have contributed to a reduction of soil erosion and sediment production since the late 1980 s.It was difficult to explicitly decouple the effect of mitigation measures in the Lower Jinsha River Basindue to the complexity associated with sediment redistribution within river channels(active channel migration and significant sedimentation). The whole basin can be subdivided into seven sub-regions according to the different proportional inputs of principal denudation processes to riverine SSY. In the Volga River Basin, anthropogenic sheet, rill and gully erosion are the predominant denudation processes in the southern region, while channel bank and bed erosion constitutes the main source of riverine suspended sediment flux in the northern part of the basin. Distribution of cultivated lands significantly determined the intensity of denudation processes.Local relief characteristics also considerably influence soil erosion rates and SSY in the southern Volga River Basin. Lithology, soil cover and climate conditions determined the spatial distribution of sheet, rill and gully erosion intensity, but they play a secondary role in SSY spatial variation.  相似文献   

15.
黑河流域中游地区作物种植结构的遥感提取   总被引:1,自引:0,他引:1  
及时、准确地获取农作物种植结构对区域水资源管理与作物产量估测等具有重要意义。随着对通过遥感手段获得作物种植结构的深入研究,如何优选遥感数据和分类器成为需要重点考虑的关键问题。针对黑河流域中游地区的作物分布与种植特点,提出一种基于多时相遥感影像与多分类器组合的作物种植结构提取方法。利用2018年18景16 m分辨率的GF-1 WFV影像,构建NDVI时间序列。根据NDVI时间序列表征的作物季相节律和物候变化规律特点,采用分层的策略,首先解译一级土地覆被类型,再解译二级土地覆被类型。一级土地覆被类型解译中,使用决策树分类方法先将NDVI特殊且易提取的水体进行解译,再使用面向对象分类方法通过分区将需借助NDVI纹理信息提取的建设用地进行解译,最后使用随机森林分类方法解译耕地、林地、草地、裸地和湿地。在对耕地的进一步分类中,使用决策树分类方法首先将具有特殊物候规律且易于区分的苜蓿类别解译出来,再将与其他类别物候差异较大的小麦解译,最后将物候相似的玉米、蔬菜及其他解译。黑河流域中游研究区内一级土地覆被分类总体精度为97.24%,卡帕系数为0.96;作物种植结构解译总体精度为86.58%,卡帕系数为0.80。此外,还分析了影响黑河流域中游研究区解译精度的4个因素:对土地覆被类别的定义、混合像元、影像分割时基础影像的选择以及分类方法的选择。通过对不同分类方法的比较发现,与仅使用最大似然分类方法、支持向量机分类方法或随机森林分类方法相比,本文提出方法的解译结果更好,解译精度更高。  相似文献   

16.
The concentrations of rare earth elements(REEs) in the bulk sediment of Core X2, which was collected from southeastern Hainan Island, were analyzed to investigate the relative contributions of various provenance regions since mid-Holocene. The results show that sediments in Core X2 were primarily derived from Hainan Island with lesser amounts from Taiwan and limited input from the Pearl River. Based on the application of quantitative inversion to model the REE data, the average contributions of river materials from southeastern Hainan Island and southwestern Taiwan to the study area were 68% and 32%, respectively. Furthermore, starting at 4.0 kyr BP, the transport of fluvial sediments from Taiwan to the study region increased due to enhanced hydrodynamics in South China Sea(SCS). These results indicate that the contributions of mountain river materials from Hainan Island and Taiwan to the continental shelf of northern SCS are non-negligible. Furthermore, these results demonstrate that mountain rivers can play an important role in the material cycle of continental margins and may feature a greater impact than large river systems in specific continental shelf areas.  相似文献   

17.
Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we addressed the sedimentary characteristics of a Holocene subaqueous clinoform in this paper. Integrated analyses were made on the core QDZ03, including sedimentary facies, sediment grain sizes, clay minerals, geochemistry, micro paleontology, and AMS 14 C dating. The result indicates that there exists a Holocene subaqueous clinoform, whose bottom boundary generally lies at 15–40 m below the present sea level with its depth contours roughly parallel to the coast and getting deeper seawards. The maximum thickness of the clinoform is up to 22.5 m on the coast side, and the thickness contours generally spread in a banded way along the coastline and becomes thinner towards the sea. At the mouths of some bays along the coast, the clinoform stretches in the shape of a fan and its thickness is evidently larger than that of the surrounding sediments. This clinoform came into being in the early Holocene(about 11.2 cal kyr BP) and can be divided into the lower and upper depositional units(DU 2 and DU 1, respectively). The unit DU 2, being usually less than 3 m in thickness and formed under a low sedimentation rate, is located between the bottom boundary and the Holocene maximum flooding surface(MFS), and represents the sediment of a post-glacial transgressive systems tract; whereas the unit DU 1, the main body of the clinoform, sits on the MFS, belonging to the sediment of a highstand systems tract from middle Holocene(about 7–6 cal kyr BP) to the present. The provenance of the clinoform differs from that of the typical sediments of the Yellow River and can be considered as the results of the joint contribution from both the Yellow River and the proximal coastal sediments of the Shandong Peninsula, as evidenced by the sediment geochemistry of the core. As is controlled mainly by coactions of multiple factors such as the Holocene sea-level changes, sediment supplies and coastal dynamic conditions, the development of the clinoform is genetically related with the synchronous clinoform or subaqueous deltas around the northeastern Shandong Peninsula and in the northern South Yellow Sea in the spatial distribution and sediment provenance, as previously reported, with all of them being formed from the initial stage of the Holocene up to the present.  相似文献   

18.
There are more people but less land in China,so food safety has always been a most important issue government concerned.With continuous population increase,economic development and environment protection,cropland occupation and supplement are unavoidable.It not only leads to the variation of cropland area,but also makes the light-temperature potential productivity per unit area different due to regional climate differentiation,therefore impacts the total potential productivity and food output eventually.So,it is necessary to analyze the climate differentiation between occupation and supplement cropland areas and to study its impact on total potential productivity,which is significant to reasonably develop natural resources and instruct agricultural arrangement.This study firstly discussed the variation and distribution of occupation and supplement croplands in China from 2000 to 2008,then analyzed the climate differentiation between occupation and supplement cropland areas and its effect on light-temperature potential productivity.The results demonstrate:1) From 2000 to 2008,the cropland variation presented occupation in the south and supplement in the north,but overall decreased.Supplement cropland was mainly from ecological reclamation(77.78%) and was mainly distributed in Northeast China and Northwest China with poor climatic and natural conditions.Occupation cropland was mainly used for construction(52.88%) and ecological restoration(44.78%) purposes,and was mainly distributed in the Huang-Huai-Hai Plain,and the middle and lower reaches of the Changjiang(Yangtze) River with better climatic and natural conditions.2) The climate conditions were quite different in supplement and occupation cropland areas.The annual precipitation,annual accumulated temperature and average annual temperature were lower in the supplement cropland area,and its average po-tential productivity per unit was only 62% of occupation cropland area,which was the main reason for the decrease of total potential productivity.3) Cropland occupation and supplement led to the variation of total potential productivity and its spatial distribution.The productivity decreased in the south and increased in the north,but had a net loss of 4.38315×107 t in the whole country.The increase of cropland area was at the cost of reclaiming natural forest and grassland resources,and destroying natural ecological environment,while the decrease of cropland area was mainly due to a lot of cropland occupied by urban-rural construction,which threatened the sustainable use of cropland resources.  相似文献   

19.
By establishing the interpreting elements, and applying supervised classification, the sandy desertification was interpreted and the desertified land areas of the counties in the western Jilin Province in 1986 and in 2000 were obtained. Taking Tongyu and Qian‘an as examples, the natural driving forces and man-made driving forces were analyzed. The paper comes the conclusions that the material sources and the warming and dry climate are the internal causes of potential land descrtification: the irrational human activities, such as destroying forest and reclaiming the grassland, are the external causes of potential land desertification; while more rational human activities, such as planting trees and restoring grassland can reverse the land desertification. Furthermore, the countermeasures and suggestions for the development of agriculture and animal husbandry in the western Jilin Province are put forward.  相似文献   

20.
Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types in various sedimentary environments have different sediment sources and transport routes. Sediments in the northern SCS (north of 20°N) between the southwest of Taiwan Island and the outer mouth of the Pearl River have high contents of illite and chlorite, which are derived mainly from sediments on Taiwan Island and/or the Yangtze River. Sediments from the Pearl River are characterized by high kaolinite and low smectite content, and most are distributed in the area between the mouth of the Pearl River and northeast of Hainan Island and transported vertically from the continental shelf to the slope. Characterized by high illite content, sediments from Kalimantan Island are transported toward the Nansha Trough. Sediments from Luzon Island are related with volcanic materials, and are transported westwards according to smectite distribution. On the Sunda Shelf, sediments from the Mekong River are transported southeast in the north while sediments from the Indonesian islands are transported northward in the south. Ascertaining surface sediment sources and their transport routes will not only improve understanding of modern transportation and depositional processes, but also aid paleoenvironmental and paleoclimatic analysis of the SCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号