首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small-scale structure of solar magnetic fields has been studied using simultaneous recordings in the spectral lines Fe i 5250 Å and Fe i 5233 Å, obtained with the Kitt Peak multi-channel magnetograph. We find that more than 90% of the magnetic flux in active regions (excluding the sunspots), observed with a 2.4 by 2.4 aperture, is channelled through narrow filaments. This percentage is even higher in quiet areas. The field lines in a magnetic filament diverge rapidly with height, and part of the flux returns back to the neighbouring photosphere. Therefore the strong fields within a magnetic filament are surrounded by weak fields of the order of a few gauss of the opposite polarity. The field-strength distribution within a filament, including the surrounding opposite-polarity fields, seems to be almost the same for all filaments within a given active or quiet region.The analysis of a scan made during an imp. 2 flare showed that observations during and after the flare would give a fictitious decrease of the magnetic energy in the region by a factor of 2–3 due to line-profile changes during the flare.Visiting Astronomer, Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

2.
The magnetic field in the outer corona and in interplanetary space has been calculated from the photospheric magnetic fields measured around the time of the 7 March, 1970 eclipse. The field-line maps are compared with eclipse photographs showing coronal structures out to about 12 r . The projected field lines as well as the observed streamers appear straight. This is caused by the rapid expansion of the outer corona and is not an indication of corotation. The calculations show that the angular velocity of the coronal plasma decreases rapidly with distance.The relation between magnetic fields and density enhancements is discussed. The field strength in the photosphere seems to determine the amount of mechanical heating of the lower corona. The density structure higher up in the corona will, however, depend decisively on the topology of the field, particularly on whether we are on open or closed field lines, and not simply on field strength.The calculations show a sector structure of the interplanetary field, which agrees well with spacecraft observations. Also the magnitudes of the observed and calculated interplanetary field agree after the Mt. Wilson magnetograph data have been corrected to account for the temperature and saturation effects in the spectral line Fei 5250 Å.On leave from the Astronomical Observatory, Lund, Sweden.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
Magnetic-field structure of the photospheric network   总被引:2,自引:0,他引:2  
A method is developed to determine the physical parameters of the spatially unresolved photospheric network. The apparent magnetic fluxes are recorded simultaneously in the two FeI lines 5250 and 5247 Å, which belong to the same multiplet and have practically the same oscillator strength and excitation potential of the lower level, but differ in the effective Lande factor. By analysing magnetograph recordings in this pair of lines together with simultaneous recordings in the two FeI lines 5250 and 5233 Å, it is possible to separate the effects on the line profiles due to Zeeman splitting and temperature enhancement in the network.From an analysis of the observations the following properties of the photospheric network are obtained: Field strengths of about 2000 G are present in the network in quiet regions. The characteristic size of the magnetic-field structures in the network appears to be in the range 100–300 km. The 5250 Å line is weakened by roughly 50% in the network. If the line had been non-magnetic, the weakening would have been about 20%. The rest of the weakening is caused by the strong Zeeman splitting. The downward velocity at the supergranular cell boundaries is estimated to be of the order of 0.5 km s-1.  相似文献   

4.
The Faraday rotation in the sunspot atmosphere is statistically detected by examining directions of the linear polarization obtained with the vector magnetograph of the Okayama Astrophysical Observatory. It is very effective near the spectral line center and the azimuth of the linear polarization deviates greatly from the magnetic field azimuth. In the case of the iron line, 5250 Å, the magnetic field azimuth will be obtained with an accuracy better than 15°, if observed in the line wing from 27 to 80 mÅ relative to the line center.  相似文献   

5.
We compare completely independent vector magnetic field measurements from two very different polarimetric instruments. The Marshall Space Flight Center's imaging vector magnetograph is based on a birefringent filter, routinely measuring all four Stokes parameters integrated over the filter bandpass (1/8 Å) which is tunable across the Fei 5250 line in 10 mÅ steps. The Haleakala Stokes Polarimeter of the Mees Solar Observatory (MSO) is based on a spectrometer, routinely measuring all four Stokes parameters of the Fei 6302.5 line simultaneously and then spatially scanning to build up a vector magnetogram. We obtained active region magnetic field data with both the Marshall Space Flight Center (MSFC) and MSO systems on five days during June 1985. After interpolating the MSFC vector fields onto the more coarse spatial grid of MSO we make a point-by-point comparison of the two vector fields for data obtained on two of these days (June 8 and 9). From this comparison we conclude: (1) the spatially-averaged line-of-sight components agree quite well; (2) although the MSO spatial grid is coarser, the quality of the MSO image is better than that of the MSFC data because of better seeing conditions; (3) the agreement between the transverse magnitudes is affected by the poor image quality of the MSFC data; and (4) if the effects of Faraday rotation caused by including line-center linear polarization in the method of analysis are taken into account, the azimuths show good agreement within the scatter in the data caused by the averaging process.National Research Council Resident Research Associate.  相似文献   

6.
I ±V profiles of the Fei 5247 and 5250 lines in the 2B flare of June 16, 1989 have been analyzed. A bright knot of the flare outside the sunspot where the central intensity of H reached a peak value of 1.4 (relative to the continuum) has been explored. The Fei 5250/Fei 5247 magnetic line ratio based on the StokesV peak separations of these lines at five evolutionary phases of the flare (including the start of the flare, the flash phase, the peak and 16 min after the peak) has been analyzed. It was found that the StokesV peak separation for the Fei 5250 line was systematically larger than that of the Fei 5247 line. This is evidence for the presence in the flare of small-scale flux tubes with kG fields. The flux tube magnetic field strength was about 1.1 kG at the start of the flare and during the flash phase, 1.55 kG during the peak, and 1.38 kG 16 min after the peak. The filling factor,, appears to decrease monotonically during the flare.  相似文献   

7.
The title instrument is mounted on the 65 cm solar Coudé telescope at the Okayama observatory. Observation is usually of the Fei 5250 Å line. The data obtained are briefly described.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

8.
Some line identifications in solar disk and limb spectra are proposed on the basis of recent laboratory and theoretical results reported in the literature, including allowed lines of Mgi and Fexiv in the EUV spectrum and an expected forbidden line of Fexvii near 1190 Å.  相似文献   

9.
Time series of the nonsplit Fei 7090 Å line have been observed in several sunspots with a 100 x 100 diode array corresponding to 48 arc sec times 1.39 Å. The spatial behaviour of Doppler motions along one fixed slit position has been studied as a function of time. Former results are confirmed, that the power in the five minute range decreases from the photosphere to the umbra, where, however, values still well above the noise level are measured. Regarding the penumbra, the power tends to exhibit a maximum at locations where the line-of-sight component of a radial horizontal field should be maximal. This indicates that the direction of the oscillatory velocities might be influenced by the magnetic field or the Evershed flow. No significant power is found in the 3 min range. An exception might be seen in a small patch at the limb of the umbra of one spot.  相似文献   

10.
Certain discrepancies between theoretical and empirical calibrations of magnetograph response are resolved by recognizing the existence of line profile changes in magnetic regions. Many of the photospheric lines commonly used for magnetic field measurements weaken greatly in magnetic regions outside of sunspots. Unless due account is made of the line profile change, the magnetograph measurements underestimate magnetic flux and field strengths.The 5250.2 Å line is especially sensitive to weakening in magnetic regions. Measurements made with this line underestimate the true field by a factor ranging from about two on the linear portion of the profile to five near the line core.Kitt Peak National Observatory Contribution No. 500.Operated by the Association of Universities for Research in Astronomy Inc., under contract with the National Science Foundation.  相似文献   

11.
In order to provide a smooth transition to a smaller aperture for the Mount Wilson daily magnetograms, a 2-step change was made, with two daily observations made using two different apertures covering an interval of several months. A comparison of these observations has made possible a check on the zero-level and calibration errors of the Mount Wilson magnetograph in recent years, and it has shown that an interval of low measured total magnetic flux resulted at least in part from an increase in the mixing of magnetic elements of the two polarities on a scale comparable with the aperture size.  相似文献   

12.
The large-scale solar velocity field has been measured over an aperture of radius 0.8 R on 121 days between April and September, 1976. Measurements are made in the line Fei 5123.730 Å, employing a velocity subtraction technique similar to that of Severny et al. (1976). Comparisons of the amplitude and frequency of the five-minute resonant oscillation with the geomagnetic C9 index and magnetic sector boundaries show no evidence of any relationship between the oscillations and coronal holes or sector structure.  相似文献   

13.
In this paper, we describe the results of an investigation of magnetic field structures in two active regions. The photospheric magnetic fields were measured simultaneously in all three components with the Crimean vector magnetograph in the Fe i 5250 line. In our analysis, we compare the observed magnetic field with the potential field. The potential field vector was calculated according to the potential-field theory, and the H z component was taken as a boundary condition. From these data vertical gradients are calculated from the condition div H = 0. Averaged gradients of both fields increase with the H z field intensity and within the error limits they do not differ from one another for field strengths up to 1200 G. For larger H z the potential field gradients become higher than those of the observed field. In large spots, observed field gradients are about two times less than those of the potential field. It is shown that this difference is connected with the observed field twisting.  相似文献   

14.
The magnetic splitting peculiarities of the absorption lines in the sunspot spectrum are considered. The most common and typical of them is breaking of all Stokes parameter symmetry in regard to the line center. The possible reason of this effect is the macroscopic gas motion with inhomogeneous velocity. Computed contours are given for the line Fe i λ5250 Å with various combinations of magnetic and velocity fields. Magneto-optical effects within the line which are connected with the magnetic and velocity field inhomogeneity are discussed. The observation results are discussed for longitudinal magnetic field zero lines. These observations were carried out for the sunspot and photosphere in two spectral lines Fe i λλ 5250 and 5233 Å. In the sunspot the regular displacement of one zero line with respect to the other zero line takes place whereas in the photosphere the displacements are random. The possible reason of the regular displacement is the change of the magnetic field direction in the different optical layers wherein corresponding spectral lines are formed effectively. The connection between the zero line displacement of a longitudinal magnetic field and the crossover effect is discussed. The computation results are given which agree with observations and illustrate the above-mentioned relationship. The influence of the Stokes parameter asymmetry on the measured magnetic field signals is considered.  相似文献   

15.
Magnetic field strengths in small umbrae and pores are measured using the line Ti i 6064.6 Å, which is formed purely in umbrae. We find field strengths between 1900 and 2600 G in the darkest parts of small umbrae and of well established pores; the spread is partly intrinsic. The field strength in diffuse transient protopores amounts to 1500 ± 250 G.We demonstrate that usage ofthe well-known magnetic line 6173.3 Å and other Fe i lines yield systematically smaller magnetic field strengths than Ti i 6064.6 Å. This is due to blending ofthe components with the central component due to photospheric stray light and the component. Routine measurements are therefore unreliable for small spots 251-01Based on observations at Sacramento Peak Observatory, Sunspot, New Mexico, U.S.A.  相似文献   

16.
Measurements of the Sun in the near-infrared He i 10830 Å absorption line were performed using the echelle spectrograph with a dispersion of 6.71 mÅ per pixel at the Vacuum Tower Telescope (German Solar Telescopes, Teide Observatory, Izaña, Tenerife, Spain) on May 26, 1993. These measurements were compared with full-disc soft X-ray images of the Sun (Japanese solar satellite Yohkoh), full-disc solar images in H (Big Bear Solar Observatory), full-disc solar images in the He i 10830 Å line (National Solar Observatory, Kitt Peak) and with full-disc microwave solar maps at 37 GHz (Metsähovi Radio Research Station). In the He 10830 Å line the Sun displays a limb darkening similar to that in the visible part of the spectrum. Active regions and H filaments show a strong absorption in the He 10830 Å line, whereas the absorption is weak in coronal holes.  相似文献   

17.
Schultz  R. B.  White  O. R. 《Solar physics》1974,35(2):309-316
We obtained simultaneous spectra with a spatial resolution of 1/2 and a temporal resolution of 15 s in H, Ca ii-K, Caii 8542 Å, and three Fei lines of the sunspot group responsible for the large flares of August, 1972 (McMath No. 11976). A time series taken 1972, August 3 in the Fei 6173 Å Zeeman sensitive line was analyzed for oscillations of field strength and the angle between the field and the line of sight, and for changes of the field associated with the Ca ii-K umbral flashes discovered by Beckers and Tallant (1969). The power spectra show no significant peaks, conflicting with the results of Mogilevskii et al. (1972) who reported oscillations in the longitudinal component of the field strength with periods of 56, 90, and 150 s. Changes in the field were not observed to be correlated with the occurrence of umbral flashes. These results place restrictions on magnetic modes of energy transport between the photospheric layers and the chromospheric layers where the umbral flashes are observed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
An estimate of the average magnetic field strength at the poles of the Sun from Mount Wilson measurements is made by comparing low latitude magnetic measurements in the same regions made near the center of the disk and near the limb. There is still some uncertainty because the orientation angle of the field lines in the meridional plane is unknown, but the most likely possibility is that the true average field strengths are about twice the measured values (0–2 G), with an absolute upper limit on the underestimation of the field strengths of about a factor 5. The measurements refer to latitudes below about 80°.  相似文献   

19.
Average (over longitude and time) photospheric magnetic field components are derived from 3 Stanford magnetograms made near the solar minimum of cycle 21. The average magnetograph signal is found to behave as the projection of a vector for measurements made across the disk. The poloidal field exhibits the familiar dipolar structure near the poles, with a measured signal in the line Fe i 5250 Å of 1 G. At low latitudes the poloidal field has the polarity of the poles, but is of reduced magnitude ( 0.1 G). A net photospheric toroidal field with a broad latitudinal extent is found. The polarity of the toroidal field is opposite in the nothern and southern hemispheres and has the same sense as subsurface flux tubes giving rise to active regions of solar cycle 21.These observations are used to discusse large-scale electric currents crossing the photosphere and angular momentum loss to the solar wind.Now at Kitt Peak National Observatory, Tucson, Ariz. 85726, U.S.A.  相似文献   

20.
Observations of two quiescent filaments show oscillatory variations in Doppler shift and central intensity of the He i 10830 Å line.The oscillatory periods range from about 5 to 15 min, with dominant periods of 5, 9, and 16 min. The 5-min period is also detected in the intensity variations, after correction for atmospheric effects. Doppler shifts precede intensity variations by about one period. The possibility that the oscillations are Alfvén waves is discussed.The Doppler signals of the filament form fibril-like structures. The fibrils are all inclined at an angle of about 25° to the long axis of the filament. The magnetic field has a similar orientation relative to the major direction of the filament, and the measured Doppler signals are apparently produced by motions along magnetic flux tubes threading the filament.The measured lifetimes of the small-scale fibrils of quiescent disk filaments are very likely a combined effect of intensity modulations and reshuffling of the structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号