首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to ?5.2 and ?2.6 (mm/month/year) over 2003–2013, respectively, for the Urmia and Tigris–Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of ?11.1, ?6.6, ?6.1, ?4.8, ?4.7, ?3.8, and ?1.2 (mm/year) for Urmia, Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar ?8.6 (mm/year) and Sarakhs ?7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.  相似文献   

2.
Abstract

The Hai River Basin (HRB) is a heavily irrigated region encompassing the North China Plain (NCP) in northeast China. In the last decades, continuous lowering of groundwater levels had been reported in the NCP. This study used data from the Gravity Recovery and Climate Experiment (GRACE) and in situ measurements to quantify recent changes in groundwater storage from 2003 to 2012. The signal from GRACE observations highlight a sharp decline in the deep subsurface water stores (deep unsaturated zone and groundwater systems) up to a rate of 17.0 ± 4.3 mm year-1 between 2003 and 2012 over the HRB, equal to a volumetric loss of 5.5 ± 1.4 km3 year-1. This result shows good consistency with in situ observations of groundwater hydraulic heads compiled from monitoring bores, and emphasizes GRACE’s ability to monitor large-scale groundwater storage variations. Results from GRACE also provide an independent assessment of the effectiveness of water saving programmes that have been implemented by the government so far. Our study indicates that groundwater overdrawal is still prevalent and the dominant factor for the persistent loss in groundwater storage over the HRB/NCP; the current groundwater consumption pattern is far beyond the natural recharge ability in groundwater system.
Editor D. Koutsoyiannis; Associate editor T. Wagener  相似文献   

3.
The water balance is an essential tool for hydrologic studies and quantifying water-balance components is the focus of many research catchments. A fundamental question remains regarding the appropriateness of water-balance closure assumptions when not all components are available. In this study, we leverage in-situ measurements of water fluxes and storage from the Southern Sierra Critical Zone Observatory (SSCZO) and the Kings River Experimental Watersheds (KREW) to investigate annual water-balance closure errors across large (1016–5389 km2) river basins and small (0.5–5 km2) headwater-catchment scales in the southern Sierra Nevada. The results showed that while long-term water balance in river basins can be closed within 10% of precipitation, in the smaller headwater catchments as much as a quarter of precipitation remained unaccounted for. A detailed diagnosis of this water-balance closure error using distributed soil moisture measurements in the top 1 m suggests an unaccounted deeper storage and a net groundwater export from the headwater catchments. This imbalance was also found to be very sensitive to the timescales over which water-balance closures were attempted. While some of the closure errors in the simple water balance can be attributed to measurement uncertainties, we argue for a broader consideration of groundwater exchange when evaluating hydrological processes at headwater scales, as the assumption of negligible net groundwater exchange may lead to an overestimation of fluxes derived from the water balance method.  相似文献   

4.
Abstract

The actual evapotranspiration and runoff trends of five major basins in China from 1956 to 2000 are investigated by combining the Budyko hypothesis and a stochastic soil moisture model. Based on the equations of Choudhury and Porporato, the actual evapotranspiration trends and the runoff trends are attributed to changes in precipitation, potential evapotranspiration, rainfall depth and water storage capacity which depends on the soil water holding capacity and the root depth. It was found that the rainfall depth increased significantly in China during the past 50 years, especially in southern basins. Contributions from changes in the water storage capacity were significant in basins where land surface characteristics have changed substantially due to human activities. It was also observed that the actual evapotranspiration trends are more sensitive to precipitation trends in water-limited basins, but more sensitive to potential evapotranspiration trends in energy-limited basins.
Editor D. Koutsoyiannis; Associate editor A. Porporato  相似文献   

5.
Abstract

The strong wet and dry seasons of tropical monsoon hydrology in India necessitate development of storage and flow diversion schemes for utilization of water to meet various social and economic needs. However, the river valley schemes may cause adverse flow-related impacts due to storage, flow diversion, tunnelling and spoil disposal. There may be critical reaches in which altered flows are not able to sustain the river channel ecology and riparian environment that existed prior to implementation of the storage and diversion schemes. In the past, environmental flows in India have usually been understood as the minimum flow to be released downstream from a dam as compensation for riparian rights, without considering the impacts on the river ecosystem. Rivers in India have been significantly influenced by anthropogenic activities over the past 60 years and have great social and religious significance to the vast population. This paper explores various aspects of past, present and future environmental flow assessment (EFA) in India highlighted by case studies from rivers across the nation. It demonstrates that multidisciplinary studies requiring expertise from a range of fields are needed for EFA, and that environmental flows are necessary for aquatic ecosystems to remain in a healthy state and for the sustainable use of water resources. The major focus areas for the development of EFA research in India are the creation of a shareable database for hydrological, ecological and socioeconomic data, developing hydrology–ecology relationships, evaluation of ecosystem services, addressing pollution due to anthropogenic activities and promotion of research on EFA. At the same time, efforts will be needed to develop new methods or refine existing methods for India.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Jain, S.K. and Kumar, P., 2014. Environmental flows in India: towards sustainable water management. Hydrological Sciences Journal, 59 (3–4), 751–769.  相似文献   

6.
《水文科学杂志》2013,58(3):418-431
Abstract

The water balance of the closed freshwater Lake Awassa was estimated using a spreadsheet hydrological model based on long-term monthly hydrometeorological data. The model uses monthly evaporation, river discharge and precipitation data as input. The net groundwater flux is obtained from model simulation as a residual of other water balance components. The result revealed that evaporation, precipitation, and runoff constitute 131, 106 and 83 × 106 m3 of the annual water balance of the lake, respectively. The annual net groundwater outflow from the lake to adjacent basins is 58 × 106 m3. The simulated and recorded lake levels fit well for much of the simulation period (1981–1999). However, for recent years, the simulated and recorded levels do not fit well. This may be explained in terms of the combined effects of land-use change and neotectonism, which have affected the long-term average water balance. With detailed long-term hydrogeological and meteorological data, investigation of the subsurface hydrodynamics, and including the effect of land-use change and tectonism on surface water and groundwater fluxes, the water balance model can be used efficiently for water management practice. The result of this study is expected to play a positive role in future sustainable use of water resources in the catchment.  相似文献   

7.
GRACE估算陆地水储量季节和年际变化   总被引:8,自引:2,他引:6       下载免费PDF全文
利用最新公布的GRACE GFZ RL04数据,分析了2003年1月~2007年12月全球27条流域和陆地水储量的季节性和年际变化.结果表明,相近流域季节性变化相位接近.2003年1月~2007年12月陆地水储量季节性变化为1572.4 km3,其中变化最大流域为亚马逊河,其次分别为鄂毕河、尼罗河和尼日尔河等流域.5年来 GRACE陆地水储量的年际变化为-75.4±40.3 km3/a,其中亚马逊河、勒拿河和马更些河等流域的年际变化呈现正增长,而刚果河、密西西比河、恒河、育空河和雅鲁藏布江等流域则相反.GRACE与GLDAS数据均表明2006年后陆地水储量年际变化存在明显增加.  相似文献   

8.
Abstract

Estimates of trends of climatic changes at basin and state scales are required for developing adaptation strategies related to planning, development and management of water resources. In the present study, seasonal and annual trends of changes in maximum temperature (T max), minimum temperature (T min), mean temperature (T mean), temperature range (T range), highest maximum temperature (H max) and lowest minimum temperature (L min) have been examined at the basin scale. The longest available records over the last century, for 43 stations covering nine river basins in northwest and central India, were used in the analysis. Of the nine river basins studied, seven showed a warming trend, whereas two showed a cooling trend. The Narmada and Sabarmati river basins experienced the maximum warming and cooling, respectively. The majority of basins in the study area show increasing trend in T range, H max and L min. Seasonal analysis of different variables shows that the greatest changes in T max and T mean were observed in the post-monsoon season, while T min experienced the greatest change in the monsoon season. This analysis provides scenarios of temperature changes which may be used for sensitivity analysis of water availability for different basins, and accordingly in planning and implementation of adaptation strategies.  相似文献   

9.
ABSTRACT

This study assesses the climate change impact on rainfall and drought incidents across Nigeria. Linear regression, Mann-Kendall tests and lag-1 serial correlation were adopted to analyse the trends and variability of rainfall and drought at 18 synoptic stations. Analysis of annual precipitation series indicates an increase in rainfall amounts at all stations, except Minna, Gusau and Yola. Seventeen of the 18 stations recorded at least one main drought period, between 1983 and 1987. A decreasing trend for the standardized precipitation index SPI-12 series was seen at Yola station, while the other stations showed an increasing trend. Also, Nigeria witnessed more annual rainfall totals but with high variability within the rainy months of the year in the first 15 years of the 21st century compared to the 20th century. Such variability in rainfall may have a significant effect on groundwater resources and the hydrology of Nigeria.  相似文献   

10.
Abstract

The study of precipitation trends is critically important for a country like India whose food security and economy are dependent on the timely availability of water. In this work, monthly, seasonal and annual trends of rainfall have been studied using monthly data series of 135 years (1871–2005) for 30 sub-divisions (sub-regions) in India. Half of the sub-divisions showed an increasing trend in annual rainfall, but for only three (Haryana, Punjab and Coastal Karnataka), this trend was statistically significant. Similarly, only one sub-division (Chattisgarh) indicated a significant decreasing trend out of the 15 sub-divisions showing decreasing trend in annual rainfall. In India, the monsoon months of June to September account for more than 80% of the annual rainfall. During June and July, the number of sub-divisions showing increasing rainfall is almost equal to those showing decreasing rainfall. In August, the number of sub-divisions showing an increasing trend exceeds those showing a decreasing trend, whereas in September, the situation is the opposite. The majority of sub-divisions showed very little change in rainfall in non-monsoon months. The five main regions of India showed no significant trend in annual, seasonal and monthly rainfall in most of the months. For the whole of India, no significant trend was detected for annual, seasonal, or monthly rainfall. Annual and monsoon rainfall decreased, while pre-monsoon, post-monsoon and winter rainfall increased at the national scale. Rainfall in June, July and September decreased, whereas in August it increased, at the national scale.

Citation Kumar, V., Jain, S. K. & Singh, Y. (2010) Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 55(4), 484–496.  相似文献   

11.
Abstract

A study of rainfall trends and temporal variations within seven sub-basins of Uganda spanning from 1940 to 2009 has been made. Rainfall climatologies are constructed from observational data, using 36 station records which reflect hydroclimatic conditions. Long-term changes in rainfall characteristics were determined by non-parametric tests (Mann-Kendall and Sen’s T tests), coefficient of variation (CV), precipitation concentration index and drought severity index. Magnitude of change was estimated by applying Sen’s estimator of slope. Decadal variability of rainfall with marked seasonal cycles is evident. Temporal variability of drought patterns is detected. Variations in annual rainfall are low with no significant trends observed in the main drainage sub-basins. Significant trends occur in October, November, December and January. A noticeable decrease in the annual total rainfall was observed mostly in northwestern and southwestern sub-basins. Rainfall trend in the second normal of June–July–August (JJA) was decreasing in all the main drainage sub-basins.

Editor Z.W. Kundzewicz; Associate editor S. Yue

Citation Nsubuga, F.W.N., Botai, O.J., Olwoch, J.M., Rautenbach, C.J.deW., Bevis, Y., and Adetunji, A.O., 2014. The nature of rainfall in the main drainage sub-basins of Uganda. Hydrological Sciences Journal, 59 (2), 278–299.  相似文献   

12.
Abstract

Around 9000 inhabitants in the Panda River basin, Sonbhadhra District, Uttar Pradesh, India, are vulnerable to a “silent” dental and skeletal fluorosis from groundwater consumption. The fluoride source and seasonal groundwater quality variation were studied by collecting 65 groundwater samples in the Upper Panda River basin. Major rock types are phyllites and granite gneissic rocks. Fluoride concentrations are in the range 0.4–5.6 mg/L in the pre-monsoon season and 0.1–6.7 mg/L in the post-monsoon season. Fluor-apatite and biotite mica in the granite gneissic rock were identified as the main provenance of fluoride in the groundwater through water–rock interactions. Due to precipitation of calcium, soils become alkaline with high contents of sodium; these conditions allow fluoride to accumulate in water. According to risk index calculations, the fluoride-affected villages were shown to fall in the fluoride risk zone (with a risk index of around 1.7). On the basis of mineral stability diagrams, groundwater from the weathered and fractured aquifers appears to be stable within the kaolinite field, suggesting weathering of silicate minerals. The groundwater is chemically potable and suitable for domestic and agricultural purposes, except for a few wells in the southern region that are contaminated with high amounts of fluoride.

Editor D. Koutsoyiannis

Citation Raju, N.J., Dey, S., Gossel, W., and Wycisk, P., 2012. Fluoride hazard and assessment of groundwater quality in the semi-arid Upper Panda River basin, Sonbhadra District, Uttar Pradesh, India. Hydrological Sciences Journal, 57 (7), 1433–1452.  相似文献   

13.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

14.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

The temporal dynamics of groundwater–surface water interaction under the impacts of various water abstraction scenarios are presented for hydraulic fracturing in a shale gas and oil play area (23 984.9 km2), Alberta, Canada, using the MIKE-SHE and MIKE-11 models. Water-use data for hydraulic fracturing were obtained for 433 wells drilled in the study area in 2013 and 2014. Modelling results indicate that water abstraction for hydraulic fracturing has very small (<0.35%) negative impacts on mean monthly and annual river and groundwater levels and stream and groundwater flows in the study area, and small (1–4.17%) negative impacts on environmental flows near the water abstraction location during low-flow periods. The impacts on environmental flow depend on the amount of water abstraction and the daily flow over time at a specific river cross-section. The results also indicate a very small (<0.35%) positive impact on mean monthly and annual groundwater contributions to streamflow because of the large study area. The results provide useful information for planning long-term seasonal and annual water abstractions from the river and groundwater for hydraulic fracturing in a large study area.  相似文献   

16.
Abstract

Abstract Inter-basin transfer of water in India is a long-term option to correct the spatial and temporal mismatch of water availability and demand, largely owing to the monsoon climate. This paper is concerned with analysis and preliminary design of a large inter-basin water transfer system in peninsular India. The system covers four major basins and involves operation of 13 major structures. The study was carried out in three stages. First, the surface water deficit in each basin was estimated. Then the net deficit was worked out by considering the availability of groundwater. Finally, the link systems were planned to transfer the amount of water needed to meet the demands with desired reliability.  相似文献   

17.
The present study is to explore the feasibility of GRACE-based estimation of a groundwater storage change in a data-poor region using a case study of the Ngadda catchment in the Lake Chad Basin. Although the Ngadda catchment has only one set of in situ time series data of groundwater from 2006 to 2009 and a limited number of groundwater measurements in 2005 and 2009, GRACE-based groundwater storage change can be evaluated against the in situ groundwater measurements combined with specific yield data. The cross-correlation analysis in the Ngadda catchment shows that maximum rainfall reached in July and August, whereas both the maximum total water storage anomaly and the maximum groundwater storage anomaly occurred 2months later. Whereas the mean annual amplitude of total water storage anomaly is about 17cm from both the average total water storage anomaly from three mascon products and the one from three spherical harmonic products, the mean annual amplitude of soil moisture storage anomaly is substantially varied from 5.58cm for CLM to about 14cm for NOAH and Mosaic. The goodness-of-fit tests show that CLM soil moisture produces the closest estimation of groundwater storage anomaly to the in situ groundwater measurements. The present study shows that GRACE-based estimation for groundwater storage anomaly can be a cost-effective and alternative tool to observe how groundwater changes in a basin scale under the limitation of modelling and in situ data availability.  相似文献   

18.
ABSTRACT

Techniques are described for annual forecasts of the water balance after drainage of large river basins. In the development of these techniques precipitation was assumed to be constant and unaffected by drainage. It is shown that the effect of drainage upon the annual runoff of the improved basins is to decrease the groundwater and swamp water resources which leads to evaporation changes. According to experimental data on the hydrophysical properties of peats, mineral soils and subsoils and how they change after drainage, the decrease in the groundwater resources was estimated for each per cent of the basin drained. This allowed account to betaken of this effect while making forecasts of runoff changes. Evaporation changes are computed as the difference between the maximum possible evaporation (potential evaporation) from cultivated areas and that from undisturbed swamps.  相似文献   

19.
This study is an attempt to determine the trends in monthly, annual and monsoon total precipitation series over India by applying linear regression, the Mann-Kendall (MK) test and discrete wavelet transform (DWT). The linear regression test was applied on five consecutive classical 30-year climate periods and a long-term precipitation series (1851–2006) to detect changes. The sequential Mann-Kendall (SQMK) test was applied to identify the temporal variation in trend. Wavelet transform is a relatively new tool for trend analysis in hydrology. Comparison studies were carried out between decomposed series by DWT and original series. Furthermore, visualization of extreme and contributing events was carried out using the wavelet spectrum at different threshold values. The results showed that there are significant positive trends for annual and monsoon precipitation series in North Mountainous India (zone NMI) and North East India (NEI), whereas negative trends were detected when considering India as whole.

EDITOR A. Castellarin ASSOCIATE EDITOR S. Kanae  相似文献   

20.
Abstract

This work comprises a spatial, temporal and statistical analysis of the epidemiology of malaria occurrence in four municipalities of the State of Amazonas, Brazil: Coari, Codajás, Manacapuru and Manaus, for the period 2003–2009. The number of malaria cases, precipitation, water level and temperature data were analysed in this study. The strength of the relationship between these hydrological/meteorological variables and the occurrence of malaria was determined by employing the Spearman rank correlation coefficient. Seasonal peaks of malaria were registered, on average, about 1–2 months before the annual maximum temperature and after the river’s seasonal high-water level. The phenomenon called repiquete (notable variations in the water level) was observed during periods of between 9 and 56 days. The results showed a statistically significant correlation between malaria, temperature, precipitation and water level. Temperature influenced malaria occurrence the least, while rainfall was the most important factor, especially in the municipality of Coari. Water level had an important influence on the records of malarial occurrence in the municipality of Manacapuru.

Editor Z.W. Kundzewicz

Citation Wolfarth, B.R., Filizola, N., Tadei, W.P., and Durieux, L., 2013. Epidemiological analysis of malaria and its relationships with hydrological variables in four municipalities of the State of Amazonas, Brazil. Hydrological Sciences Journal, 58 (7), 1495–1504.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号