首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is a study of abundances of the elements He, C, N, O, Ne, Mg, Si, S, Ar, Ca, and Fe in solar energetic particles (SEPs) in the 2?–?15 MeV?amu?1 region measured on the Wind spacecraft during 54 large SEP events occurring between November 1994 and June 2012. The origin of most of the temporal and spatial variations in abundances of the heavier elements lies in rigidity-dependent scattering during transport of the particles away from the site of acceleration at shock waves driven out from the Sun by coronal mass ejections (CMEs). Variation in the abundance of Fe is correlated with the Fe spectral index, as expected from scattering theory but not previously noted. Clustering of Fe abundances during the “reservoir” period, late in SEP events, is also newly reported. Transport-induced enhancements in one region are balanced by depletions in another, thus, averaging over these variations produces SEP abundances that are energy independent, confirms previous SEP abundances in this energy region, and provides a credible measure of element abundances in the solar corona. These SEP-determined coronal abundances differ from those in the solar photosphere by a well-known function that depends upon the first ionization potential (FIP) or ionization time of the element.  相似文献   

2.
The isotopic compositions of noble gases in the solar wind show high enrichments of light isotopes. When corrected for mass fractionation all five noble gases there can be resolved in terms of the two primitive noble gas components that have been identified in planetary solids. Reasons are presented for assigning the fractionation to a solar process that selectively enriches lighter nuclei at the surface of the Sun. When abundances of the elements at the Sun's surface are corrected for this fractionation, it is shown that atomic abundances for major elements in the bulk Sun are (in decreasing order): Fe, Ni, O, Si, S and Mg. Solar elements at about the 1% atomic abundance level include He, C, Ne, Ca and Cr. These results suggest that fusion of hydrogen is probably not the Sun's primary energy source.  相似文献   

3.
R. Mewe 《Solar physics》1972,22(2):459-491
The fluxes of about 230 spectral lines in the range 1–60 Å from coronal ions of C, N, O, Ne, Na, Mg, Al, Si, S, Ar, K, Ca, Ti, Cr, Mn, Fe, and Ni are computed for a range of electron temperature from 105 to 109 K. The relative ion abundances are derived from Jordan's ionization equilibrium calculations. The continuum emission is derived from computations of Landini and Monsignori Fossi with a correction for the free-free emission.  相似文献   

4.
We present narrow-band and equivalent width (EW) images of the thermal composite supernova remnant (SNR) 3C 391 in the X-ray emission lines of Mg, Si and S using the Chandra ACIS Observational data. The EW images reveal the spatial distribution of the emission of the metal species Mg, Si and S in the remnant. They have a clumpy structure similar to that seen in the broadband diffuse emission, suggesting that they are largely of interstellar origin. We find an interesting finger-like feature protruding outside the southwestern radio border of the remnant, somewhat similar to the jet-like Si structure found in the famous SNR Cas A. This feature may possibly be the debris of the jet of ejecta from an asymmetrical supernova explosion of a massive progenitor star.  相似文献   

5.
The Ultraviolet Coronagraph Spectrometer on the SOHO satellite covers the 940–1350 Å range as well as the 470–630 Å range in second order. It has detected coronal emission lines of H, N, O, Mg, Al, Si, S, Ar, Ca, Fe, and Ni, particularly in coronal streamers. Resonance scattering of emission lines from the solar disk dominates the intensities of a few lines, but electron collisional excitation produces most of the lines observed. Resonance, intercombination and forbidden lines are seen, and their relative line intensities are diagnostics for the ionization state and elemental abundances of the coronal gas. The elemental composition of the solar corona and solar wind vary, with the abundance of each element related to the ionization potential of its neutral atom (First Ionization Potential–FIP). It is often difficult to obtain absolute abundances, rather than abundances relative to O or Si. In this paper, we study the ionization state of the gas in two coronal streamers, and we determine the absolute abundances of oxygen and other elements in the streamers. The ionization state is close to that of a log T = 6.2 plasma. The abundances vary among, and even within, streamers. The helium abundance is lower than photospheric, and the FIP effect is present. In the core of a quiescent equatorial streamer, oxygen and other high-FIP elements are depleted by an order of magnitude compared with photospheric abundances, while they are depleted by only a factor of 3 along the edges of the streamer. The abundances along the edges of the streamer (‘legs’) resemble elemental abundances measured in the slow solar wind, supporting the identification of streamers as the source of that wind component.  相似文献   

6.
We present results from XMM–Newton Reflection Grating Spectrometer observations of the prototypical starburst galaxy M82. These high-resolution spectra represent the best X-ray spectra to date of a starburst galaxy. A complex array of lines from species over a wide range of temperatures is seen, the most prominent being due to Lyman α emission from abundant low- Z elements such as N, O, Ne, Mg and Si. Emission lines from helium-like charge states of the same elements are also seen in emission, as are strong lines from the entire Fe L series. Further, the O vii line complex is resolved and is seen to be consistent with gas in collisional ionization equilibrium.
Spectral fitting indicates emission from a large mass of gas with a differential emission measure over a range of temperatures (from ∼ 0.2 to ∼ 1.6 keV, peaking at ∼ 0.7 keV), and evidence for super-solar abundances of several elements is indicated. Spatial analysis of the data indicates that low-energy emission is more extended to the south and east of the nucleus than to the north and west. Higher energy emission is far more centrally concentrated.  相似文献   

7.
We obtain the chemical abundances of six barium stars and two CH subgiant stars based on the high signal-to-noise ratio and high resolution Echelle spectra. The neu- tron capture process elements Y, Zr, Ba, La and Eu show obvious overabundances relative to the Sun, for example, their [Ba/Fe] values are from 0.45 to 1.27. Other elements, in- cluding Na, Mg, A1, Si, Ca, Sc, Ti, V, Cr, Mn and Ni, show comparable abundances to the Solar ones, and their [Fe/H] covers a range from -0.40 to 0.21, which means they belong to the Galactic disk. The predictions of the theoretical model of wind accretion for bi- nary systems can explain the observed abundance patterns of the neutron capture process elements in these stars, which means that their overabundant heavy-elements could be caused by accreting the ejecta of AGB stars, the progenitors of present-day white dwarf companions in binary systems.  相似文献   

8.
The brightest star in either Magellanic cloud has been analyzed by the method of model atmospheres using observational data secured at Cerro Tololo. The results from abundance studies are in general accord with the conclusions by Przybylski. We find solar abundances for Fe, Sc, Mg, Si and, probably, Ca. The V, Cr, Si, Ti data suggest lower abundances but the evidence is not conclusive.  相似文献   

9.
The abundances of the wide binary pair HD 219175 A and B are determined and compared using a line-by-line differential analysis. No evidence for difference has been found in the abundances of Fe, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Ni, Cu and Ba. Our results support a physical relation between the two components of HD 219175.  相似文献   

10.
邱红梅  赵刚  仲佳勇 《天文学报》2002,43(3):257-263
在第1篇论文的基础上,确定了样本星的恒星大气参数,得到这些星中9种元素的丰度。讨论了各种元素丰度随[Fe/H]的变化。平均的[Na/Fe]~-0.01dex,接近于太阳丰度。α元素Si和Ca具有几乎相同的丰度模式,而[Ti/Fe]弥散较大,但三者均有随[Fe/H]的减小而增加的趋势。铁峰元素V、Cr、Ni在不同丰度处有较大的弥散,[Cr/Fe]在所有样本星中均表现超丰;而[Mn/Fe]却明显过贫,且随金属丰度的增加而增加。  相似文献   

11.
An analysis is undertaken of the relation between dust/gas mass ratios and elemental abundances within planetary nebulae (PNe). It is found that M DUST/ M GAS is broadly invariant with abundance, and similar to the values observed in asymptotic giant branch (AGB)-type stars. However, it is noted that the masses of dust observed in low-abundance PNe are similar to the masses of heavy elements observed in the gas phase. This is taken to imply that levels of elemental depletion must be particularly severe, and extend to many more species than have been identified so far. In particular, given that levels of C and O depletion are likely to be large, then this probably implies that species such as Fe, S, Si and Mg are depleted as well. There is already evidence for depletion of Fe, Si and Mg in individual PNe. It follows that whilst quoted abundances may accurately reflect gas-phase conditions, they are likely to be at variance with intrinsic abundances in low Z N nebulae.
Finally, we note that there appears to be a variation in dust/gas mass ratios with galactocentric distance, with gradient similar to that observed for several elemental abundances. This may represent direct evidence for a correlation between dust/gas mass ratios and nebular abundances.  相似文献   

12.
We measured metal abundances of the intracluster medium in the central regions of 34 nearby clusters of galaxies, using ASCA data. Clusters that have a sharp X-ray emission centred on a cD galaxy are commonly found to exhibit a central increment in the Fe abundance, which is more pronounced in lower temperature clusters; +(0.1–0.2) solar at kT >5 keV, compared with +(0.2–0.3) solar at 1.5< kT <4 keV. These central excess metals are thought to be ejected from cD galaxies. Several low-temperature cD type clusters also show significant Si abundance increase by +(0.1–0.2) solar at the central region. Compared with the Si-rich abundances observed in the outer regions of rich clusters, the Si to Fe abundance ratio of central excess metals tends to be near the solar ratio, implying that type Ia products from cD galaxies are dominant for the central excess metals. On the other hand, some other clusters do not show the central Fe abundance increase. As these clusters tend to contain two or three central giant galaxies, it is suggested that galaxy interactions have removed the central abundance increase.  相似文献   

13.
The abundances of the light (Na to Ca) elements in disc and halo stars are reviewed. New analyses are emphasized. Elements considered are the α-nuclei (Mg, Si, and Ca), and the odd-even nuclei (Na and Al, also25Mg and26Mg). The α-nuclei are overabundant (relative to Fe) in the old disc and halo stars. Halo stars ([Fe/H] < —1.2) have [α/Fe] ∼0.3 with extreme halo ([Fe/H] ≲ −2.0) stars showing possibly higher overabundances. The scatter in [α/Fe] at a given [Fe/H] is small. To within the observational errors, the abundance patterns for Mg, Si, and Ca are identical. For disc stars, the Na and Al abundances relative to Mg are almost independent of the [Fe/H]. Halo stars ([Fe/H] < −1) show [Na/Mg] < 0 and [AI/Mg] < 0, but the form of the mean relation and the scatter about the relation between [odd-even/Mg] and [Fe/H] remains uncertain.  相似文献   

14.
The differential flux and energy spectra of solar cosmic ray heavy ions of He, C, O, Ne, Mg, Si, and Fe were determined in the energy interval E = 3–30 MeV amu-1 for two large solar events of January 24, 1971 and September 1, 1971 in rocket flights made from Ft. Churchill. From these data the relative abundances and the abundance enhancement factors, ξ, relative to photospheric abundances were obtained for these elements. Similar results were obtained for a third event on August 4, 1972 from the available published data. Characteristic features of ξ vs nuclear charge dependences were deduced for five energy intervals. The energy dependence of ξ for He shows a moderate change by a factor of about 3, whereas for Fe, ξ shows a very dramatic decrease by a factor of 10–20 with increasing energy. It is inferred that these abundance enhancements of solar cosmic ray heavy ions at low energies seem to be related to their ionization states (Z *) and hence studies of Z * can give information on the important parameters such as temperature and density in the accelerating region in the Sun.  相似文献   

15.
The X-ray Solar Monitor (XSM) on the Indian lunar mission Chandrayaan-1 was flown to complement lunar elemental abundance studies by the X-ray fluorescence experiment C1XS. XSM measured the ≈?1.8?–?20 keV solar X-ray spectrum during its nine months of operation in lunar orbit. The soft X-ray spectra can be used to estimate absolute coronal abundances using intensities of emission-line complexes and the plasma temperature derived from the continuum. The best estimates are obtained from the brightest flare observed by XSM: a C2.8-class flare. The well-known first-ionization potential (FIP) effect is observed; abundances are enhanced for the low-FIP elements Fe, Ca, and Si, while the intermediate-FIP element S shows values close to the photospheric abundance. The derived coronal abundances show a quasi-mass-dependent pattern of fractionation.  相似文献   

16.
In this paper we use the observations of solar wind helium ions made by the Ion Composition Instrument (ICI) on the ISEE-3/ICE spacecraft to study the variation of helium abundance in the solar wind and to arrive at an average value of that quantity for the period August 1978 to December 1982. The abundance varies in a similar way to that observed in the previous solar cycle, but more detailed dependence on velocity and solar cycle epoch is observed. The long-term average helium abundance is used in conjunction with long term abundances of 3He, O, Ne, Si, and Fe, measured with respect to helium using the same instrument, to compile abundances with respect to hydrogen which can be reliably compared with solar system abundances. With the extended data set we are able to show Si and Fe to be overabundant by a factor of three with respect to solar system abundances and He underabundant by a factor of two.  相似文献   

17.
The Chandrayaan-1 X-ray Spectrometer (C1XS) flown on-board the first Indian lunar mission Chandrayaan-1, measured X-ray fluorescence spectra during several episodes of solar flares during its operational period of ∼9 months. The accompanying X-ray Solar Monitor (XSM) provided simultaneous spectra of solar X-rays incident on the Moon which are essential to derive elemental chemistry. In this paper, we present the surface abundances of Mg, Al, Si, Ca and Fe, derived from C1XS data for a highland region on the southern nearside of the Moon. Analysis techniques are described in detail including absolute X-ray line flux derivation and conversion into elemental abundance. The results are consistent with a composition rich in plagioclase with a slight mafic mineral enhancement and a Ca/Al ratio that is significantly lower than measured in lunar returned samples. We suggest various possible scenarios to explain the deviations.  相似文献   

18.
Local thermodynamic equilibrium (LTE) absolute and differential abundances are presented for a peculiar metal-rich B-type star, HD 135485. These suggest that HD 135485 has a general enrichment of ∼0.5 dex in all the metals observed (C, N, O, Ne, Mg, Al, Si, P, S, Cl, Ar, Sc, Ti, Cr, Mn, Fe and Sr), except for nickel. The helium enhancement and hence hydrogen deficiency can account for ≤ 0.2 dex of this enhancement of metals, with the additional enhancement probably being representative of the progenitor gas. However, some of the metals appear to have greater enhancements, which may have occurred during the star's evolution. The significantly larger nitrogen abundance coupled with a modest helium enhancement observed in HD 135485 indicates that carbon–nitrogen (CN) processed material has possibly contaminated the stellar surface. Neon and carbon enhancements may indicate that helium core flashes have also occurred in HD 135485. Some of the iron-group elements (viz. Mn and Ni) appear to have similar abundance patterns to that of silicon Ap stars, but it is uncertain how these abundance patterns formed if they were not present in the progenitor gas. From a kinematical investigation it is unclear whether this star formed in a metal-rich region as implied by its chemical composition. From its position in the Hertzsprung–Russell diagram, HD 135485 would appear to be an evolved star lying close to or on the horizontal branch.  相似文献   

19.
Integral field spectroscopy has been obtained for the nuclear regions of three large, well-studied, early-type galaxies. From these spectra we have obtained line-strength maps for about 20 absorption lines, mostly belonging to the Lick system. An extensive comparison with multilenslet spectroscopy shows that accurate kinematic maps can be obtained, and also reproducible line-strength maps. Comparison with long-slit spectroscopy also produces good agreement.
We show that Mg is enhanced with respect to Fe in the inner disc of one of the three galaxies studied, the Sombrero. [Mg/Fe] there is larger than in the rest of the bulge. The large values of Mg/Fe in the central disc are consistent with the centres of other early-type galaxies, and not with large discs, like the disc of our Galaxy, where [Mg/Fe] ∼0. We confirm with this observation a recent result of Worthey: that Mg/Fe is determined only by the central kinetic energy, or escape velocity, of the stars, and not by the formation time-scale of the stars.
A stellar population analysis using the models of Vazdekis et al. shows that our observed H γ agrees well with what is predicted based on the other lines. Given the fact that H β is often contaminated by emission lines, we confirm the statement of Worthey & Ottaviani, Kuntschner & Davies and others that if one tries to measure ages of galaxies, H γ is a much better index to use than H β . Using the line strength of the Ca  ii IR triplet as an indicator of the abundance of Ca, we find that Ca follows Fe, and not Mg, in these galaxies. This is peculiar, given the fact that Ca is an α element. Finally, by combining the results of this paper with those of Vazdekis et al., we find that the line-strength gradients in the three galaxies are primarily caused by variations in metallicity.  相似文献   

20.
Abstract— We used the ultraviolet to visible spectrometers onboard the midcourse space experiment to obtain the first ultraviolet spectral measurements of a bright meteor during the 1997 Leonid shower. The meteor was most likely a Leonid with a brightness of about‐2 magnitude at 100 km altitude. In the region between 251 and 310 nm, the two strongest emission lines are from neutral and ionized magnesium. Ionized Ca lines, indicative of a hot T ? 10 000 K plasma, are not detected. The Mg and Mg+ line intensity ratio alone does not yield the ionization temperature, which can be determined only by assuming the electron density. A typical air plasma temperature of T = 4400 K would imply a very high electron density: ne = 2.2 times 1018 m‐3, but at chondritic abundances of Fe/Mg and Si/Mg ? 1. For a more reasonable local‐thermodynamic‐equilibrium (LTE) air plasma electron density, the Mg and Mg+ line ratio implies a less than chondritic Fe/Mg = 0.06 abundance ratio and a cool non‐LTE T = 2830 K ionization temperature for the ablation vapor plasma. The present observations do not permit a choice between these alternatives. The new data provide also the first spectral confirmation of the presence of molecular OH and NO emission in meteor spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号