首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王舫  刘福来  冀磊  刘利双 《岩石学报》2017,33(9):2975-2985
澜沧群出露于滇西"三江"地区的南段,其主要岩石由遭受低级变质作用改造的泥质岩和基性火山岩组成。这些岩石普遍经历了古特提斯洋的闭合以及随后的洋陆俯冲过程,是研究古特提斯洋俯冲-碰撞过程的重要窗口。但是有关澜沧群的形成时代、物质来源以及形成的构造背景等一系列问题长期以来存在着多种争议。本文对澜沧群中3件石英岩和1件绢云母变质石英砂岩样品中分选出的碎屑锆石进行了阴极发光图像分析和LA-ICP-MS U-Pb年代学研究。澜沧群浅变质岩系碎屑锆石具有明显或弱的振荡环带和较高的Th/U比值,表明岩浆成因。年代学分析结果表明,4件浅变质岩石样品均得到了两组主要年龄峰值,分别为530Ma和930Ma、570Ma和915Ma、540Ma和960Ma、570Ma和910Ma。本次研究中碎屑锆石U-Pb年龄主要分布在570~530Ma和960~910Ma。其中,最年轻的碎屑锆石年龄峰值~530Ma,支持了前人认为澜沧群沉积时代为中奥陶纪(462~454Ma)的认识。本研究中澜沧群浅变质岩系碎屑锆石年龄分布特征表明源区可能主要为泛非期和罗迪尼亚超大陆聚合-裂解过程中形成的岩浆岩。碎屑锆石磨圆较好指示其经历了较长距离的搬运。澜沧群浅变质岩系碎屑锆石与羌塘、特提斯喜马拉雅和拉萨地体变沉积岩或地层中碎屑锆石具有相似的年龄分布特征,表明它们可能具有相似的源区。  相似文献   

2.
《International Geology Review》2012,54(14):1754-1768
The Wudaogou Group in eastern Yanbian, Northeast China, plays a key role in constraining the timing and eastward termination of the Solonker–Xra Moron River–Changchun Suture, where the Palaeo-Asian Ocean closed. The Wudaogou Group consists of schist, gneiss, amphibolite, metasedimentary, and metavolcanic rocks, all of which underwent greenschist- to epidote–amphibolite-facies regional metamorphism, with some hornfels resulting from contact metamorphism. To determine the age of deposition, the timing and grade of metamorphism, and the tectonic setting of the Wudaogou Group, we investigated the petrography and geochronology of the metamorphic rocks in this group. Zircons from the metasedimentary rocks of this group can be divided into metamorphic zircons and detrital zircons of magmatic origin. U–Pb ages of metamorphic zircons dated by LA-ICP-MS vary from 249 ± 4 to 266 ± 4 Ma, approximating the age of regional metamorphism in the eastern Yanbian area. Detrital zircons yield U–Pb ages ranging from 253 ± 5 to 818 ± 5 Ma, and indicate that the provenance of the Wudaogou Group experienced four tectonic–thermal events between 818 and 253 Ma: Neoproterozoic (ca. 818–580 Ma), Cambro–Ordovician (ca. 500–489 Ma), Devonian–Carboniferous (ca. 422–300 Ma), and middle–late Permian (ca. 269–253 Ma). The youngest detrital zircon, with a U–Pb age of 253 ± 5 Ma, defines the maximum depositional age of the Wudaogou Group. The presence of the Cambro-Ordovician and Neoproterozoic detrital zircons implies that the source of the Wudaogou Group had an affinity with Northeast China, which leads us to conclude that the Solonker–Xra Moron River–Changchun Suture extends from Wangqing to Hunchun in eastern Yanbian, and that the Palaeo-Asian Ocean may have closed at the end of the Permian or Early Triassic period.  相似文献   

3.
滇西腾冲地块高黎贡群变质沉积岩时代和构造背景的厘定对正确认识原特提斯构造域演化过程及腾冲地块与冈瓦纳大陆之间的关系十分关键。岩石学、岩石地球化学结果表明,高黎贡群变质岩由变质沉积岩和变质岩浆岩组成,前者以片岩和副片麻岩为主,夹少量大理岩和石英岩,其原岩由一套杂砂岩、泥岩夹少量灰岩、硅质岩岩石组合,为深海-半深海相沉积物,形成于活动大陆边缘环境。碎屑锆石LA-ICP-MS U-Pb定年结果表明高黎贡群变质沉积岩中的锆石主要来源于与罗迪尼亚、冈瓦纳超大陆拼合及原特提斯洋俯冲有关的岩浆岩(900~1000Ma和500~600Ma),少量来源于中元古代地层(1500~1600Ma和2300~2400Ma)。4件样品中最年轻碎屑锆石群的加权平均年龄(507~510Ma)及没有出现有意义的小于470Ma碎屑锆石,表明高黎贡群变质沉积岩原岩形成于510~470Ma,是晚寒武世-早奥陶世早期原特提斯洋壳向冈瓦纳大陆下俯冲过程中,在俯冲带上盘沉积的含有大量该期火成岩碎屑的斜坡相沉积物。  相似文献   

4.
The depositional and metamorphic ages and provenances of the Ailaoshan(ALS) Group in the Ailaoshan-Red River(ALS-RR) shear zone, southwestern South China Block(SCB), were investigated to constrain the tectonic history of the southwestern SCB. In this study, we use petrology, geochemical analysis, zircon cathodoluminescence imaging and UPb geochronology to analyse samples of quartzite, garnet-bearing two-mica schist and metapelite. The age spectra of detrital zircon grains from these metasediments show two dominant age peaks at 550–424 Ma and 876–730 Ma and two subordinate peaks at 970–955 Ma and ~2450 Ma. The youngest peak, corresponding to the early Palaeozoic, accounts for more than 20% of the total dates and constrains the deposition of the ALS Group to the Palaeozoic rather than the Palaeoproterozoic as traditionally thought. Moreover, two peaks of metamorphic ages corresponding to the Permo-Triassic and Cenozoic were also identified, and these ages document the tectonothermal events associated with the Indosinian collision between the Indochina Block and the SCB and the Himalayan collision between the Indian and Asian plates. Geochemical data suggest that the provenances of the ALS Group were dominated by continental arc and recycled metasedimentary rocks. The comparison of probability density distribution plots of the detrital zircon U-Pb age data indicates that the Neoproterozoic detritus in the ALS Group was probably derived from the arc-related Neoproterozoic intrusive bodies in the northwestern and southwestern SCB. Furthermore, the early Palaeozoic detritus might have been sourced from eroded early Palaeozoic strata and magmatic plutons in Cathaysia and volcanic rocks in the western Indochina Block.  相似文献   

5.
滇西澜沧岩群碎屑锆石U-Pb定年及其地质意义   总被引:1,自引:0,他引:1       下载免费PDF全文
虽然前人对澜沧岩群做了大量的研究,但缺乏同位素年代学方面的研究。此次研究针对澜沧江南段菖蒲塘-大田山地区澜沧岩群绢白云母石英片岩进行碎屑锆石U-Pb定年,为澜沧岩群的形成时代增添年代学证据。极大多数(129粒)锆石阴极发光(CL)图像显示其有明显的结晶振荡环带,指示其为岩浆成因的碎屑锆石,129粒碎屑锆石具有多组峰值年龄,最年轻一组年龄加权平均值为452±26Ma,表明澜沧岩群最早沉积时限不早于452±26Ma;极少数(1粒)锆石具弱阴极发光,缺乏内部结构特点,认为其为变质重结晶锆石,变质结晶锆石U-Pb年龄为255±3Ma,与前人研究所得澜沧岩群变质时代基本吻合。综合分析,澜沧岩群的沉积时限不早于452±26Ma,在二叠纪末期可能发生变质作用。  相似文献   

6.
滇西南昌宁-孟连缝合带东侧出露的澜沧岩群是重建原特提斯构造演化的关键,但其物质组成、时代和属性长期存在争议。近期地质调查表明,惠民地区的澜沧岩群惠民岩组主要由玄武岩、玄武安山岩、凝灰岩、砂岩、泥岩及灰岩组成,普遍经历了强烈构造变形和绿片岩相变质作用。岩石地球化学特征显示,玄武安山岩属于钙碱性系列,富集轻稀土元素和大离子亲石元素,具Nb、Ta和Ti的负异常,具有与俯冲相关火山弧的地球化学属性。其玄武安山岩锆石LA-ICP-MS^(206)Pb/^(238)U加权平均年龄为461.8±5.5Ma(MSWD=1.19,n=25);3件变质碎屑岩夹层的最年轻碎屑锆石U-Pb年龄峰值分别为469Ma、470Ma和475Ma,且同时期火山岩锆石占主导,指示其形成于汇聚板块边缘环境。结合本区东侧兰坪-思茅盆地西缘发育的同时期裂谷型双峰式火山岩分析,澜沧岩群惠民岩组变质火山-沉积岩组合可能是原特提斯洋沿扬子地块西缘向东俯冲过程(现今地理方位)形成的产物。研究表明古特提斯与原特提斯构造演化是连续的。  相似文献   

7.
林寺山组是胶莱盆地莱阳群底部重要的地层单元之一.准确限定其沉积时代与物源性质对于客观重建华北陆块东部晚中生代大地构造格局以及周缘造山带/前寒武纪变质基底晚中生代的折返过程具有重要的制约作用.以莱阳盆地蛇窝泊地区莱阳群林寺山组细砾岩为研究对象,对其开展了野外地质调查、岩相学观察、锆石U-Pb测年与锆石稀土元素分析等综合研究,并获得了如下初步认识.(1)林寺山组细砾岩中最小一组碎屑锆石加权平均年龄分别为129±1 Ma与127±5 Ma,结合区域上不整合于莱阳群之上青山群火山岩锆石谐和年龄为119±1 Ma,推测蛇窝泊地区林寺山组沉积时代介于127~119 Ma.(2)蛇窝泊地区林寺山组细砾岩的碎屑锆石年龄变化于2 858~126 Ma之间,并以新太古代晚期与白垩纪早期碎屑锆石为主.前古元古代的碎屑锆石主要来源于胶北前寒武纪变质岩,表明胶北太古宙-古元古代变质岩至少在白垩纪早期已折返至近地表.(3)160~120 Ma岩浆型碎屑锆石主要来源于胶东同时代的中酸性侵入体,暗示在白垩纪早期至少部分160~120 Ma中酸性侵入体已抬升至地表.(4)林寺山组发育少量的二叠纪(280 Ma)和印支期(213 Ma)变质锆石,表明胶东地区可能存在二叠纪约280 Ma区域变质-变形事件,同时暗示早白垩世苏鲁超高压变质岩已经折返到地表.   相似文献   

8.
In order to decipher the origin of eclogite in the high‐P/T Sanbagawa metamorphic belt, SHRIMP U–Pb ages of zircons from quartz‐bearing eclogite and associated quartz‐rich rock (metasandstone) were determined. One zircon core of the quartz‐rich rock yields an extremely old provenance age of 1899 ± 79 Ma, suggesting that the core is of detrital origin. Eight other core ages are in the 148–134 Ma range, and are older than the estimated age for trench sedimentation as indicated by the youngest radiolarian fossil age of 139–135 Ma from the Sanbagawa schists. Ages of metamorphic zircon rims (132–112 Ma) from the quartz‐rich rock are consistent with metamorphic zircon ages from the quartz‐bearing eclogite, indicating that eclogite facies metamorphism peaked at 120–110 Ma. These new data are consistent with both the Iratsu eclogite body and surrounding highest‐grade Sanbagawa schists undergoing coeval subduction‐zone metamorphism, and subsequent re‐equilibration under epidote amphibolite facies conditions during exhumation.  相似文献   

9.
黑龙江西部龙江地区位于中亚造山带东段,黑河-贺根山缝合带与西拉木伦缝合带之间,地层记录了两大古板块之间古亚洲洋闭合过程的信息。本文对龙江地区乐平统林西组和下-中三叠统老龙头组的砂岩样品进行碎屑重矿物和碎屑锆石U-Pb同位素年代学研究。碎屑重矿物组合以锆石+磷灰石+金红石+角闪石+绿帘石+重晶石的组合为特征,表明物源主要来自于中酸性岩浆岩,并有少量变质岩及沉积岩组分。林西组样品最年轻的锆石年龄为278±3Ma,老龙头组样品最年轻的锆石年龄为247±3Ma、243±4Ma及237±3Ma,结合前人的研究,限定了林西组沉积于乐平世,老龙头组沉积于早三叠世-中三叠世。碎屑锆石年龄谱明显分为五组:237~258Ma、270~329Ma、357~558Ma、680~1633Ma及1893~1966Ma。其中237~258Ma的碎屑锆石主要来自与古亚洲洋洋壳消亡前的俯冲增生过程相关的火山活动,270~329Ma的碎屑锆石主要来自大石寨组火山岩及其同期侵入岩,357~558Ma的碎屑锆石来自早古生代-晚古生代早期岩浆弧,680~1633Ma的碎屑锆石可能来自兴安及额尔古纳地块的变质基底,而较古老的~1800Ma的锆石年龄暗示了华北克拉通基底的物源信息。通过研究发现林西组及老龙头组样品前30%年轻的碎屑锆石年龄与地层沉积年龄之差都小于100Ma,结合对砂岩碎屑组成、重矿物组合及盆地与火山弧位置关系的研究,认为研究区乐平世-中三叠世沉积盆地具有汇聚背景,为弧前盆地。  相似文献   

10.
《International Geology Review》2012,54(16):2036-2056
ABSTRACT

The Chinese Southwest Tianshan Orogenic Belt is located along the boundary between the Central Asian Orogenic Belt (CAOB) and the Tarim Block (TB), NW China. It records the convergence of the Tarim Block and the Middle Tianshan, and is, therefore, a crucial region for understanding the Eurasia continental growth and evolution. The Wulagen (geographical name) metasedimentary rocks of the Wuqia area (mainly metamorphic sandstones and mica schists) form one of the metamorphic terranes in the Southwestern Tianshan Orogenic Belt. The geochronology of these rocks is poorly known, which hampers our understanding of the tectonic evolution of the belt. We analyzed 517 zircon grains for detrital zircon U–Pb dating and 93 zircon grains for in situ Lu–Hf isotopic compositions from the Wulagen metasedimentary rocks. The analyzed zircon grains yield Neoarchean to late Paleozoic U–Pb ages with major age peaks at ~2543 Ma, 1814 Ma, 830 Ma, 460 Ma, and the youngest cluster of zircon (magmatogene) ages is 395 Ma. The zircon U–Pb data show that the late Paleozoic (Early Devonian) is the maximum depositional age of the Wulagen metasedimentary rocks, rather than the previously considered Precambrian period. The zircons with Paleozoic ages yield εHf(t) values of ?22.0 to +11.3 and two-stage model ages (TDM2) of 3.95 to 1.30 Ga, suggesting that the parental magmas were formed from partial melting of pre-existing crustal rocks. Our zircon U–Pb geochronology and Hf isotopic data indicate the major source regions for the Wulagen metasedimentary rocks was the Kyrgyzstan North Tianshan. The zircon age population of 600–400 Ma (peak at ~460 Ma) has negative εHf(t) values (?15.0 to ?0.6) and Mesoproterozoic two-stage model ages, suggesting that the early Paleozoic magmatism resulted mainly from the melting of ancient crust, which played an important role in crustal evolution in the southern CAOB.  相似文献   

11.
The Great Xing’an Range in Northeast China is located in the eastern part of the Central Asian Orogenic Belt. From north to south, the Great Xing’an Range is divided into the Erguna, Xing’an, and Songliao blocks. Previous U–Pb zircon geochronology results have revealed that some ‘Precambrian metamorphic rocks’ in the Xing’an block have Phanerozoic protolith ages, questioning whether Precambrian basement exists in the Xing’an block. We present laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb dating results for zircons from suspected Precambrian metamorphic rocks in the Xing’an block. Meta-rhyolites of the Xinkailing Group in Nenjiang yield magmatic ages of 355.8 Ma. Detrital zircons from phyllites of the Xinkailing Group in Duobaoshan yield populations of ca. 1505, ca. 810, and ca. 485 Ma, with the youngest peak constraining its depositional age to be <485 Ma. Zircons from amphibolitic gneisses of the Xinkailing Group in Nenjiang have magmatic ages of 308.6 Ma. Mylonitic granites of the Xinkailing Group in Nenjiang have zircon magmatic ages of 164 Ma. Detrital zircons from two-mica quartz schists of the Luomahu Group in the Galashan Forest yield ca. 2419, ca. 1789, ca. 801, ca. 536, ca. 480, and ca. 420 Ma, with the youngest peak indicating its depositional age as <420 Ma. Detrital zircons from mylonitized sericite–chlorite schist of the Ergunhe Formation in Taerqi yield populations of 982–948, ca. 519, and ca. 410 Ma, with the youngest peak demonstrating that its depositional age is <410 Ma. These zircon ages for a range of lithologies show that the Great Xing’an Range metamorphic rocks formed during the Phanerozoic (164–485 Ma) and that this crust is mostly Palaeozoic. Based on these results and published data, we conclude that there is no evidence of Precambrian metamorphic basement in the Xing’an block. In summary, the age data indicate that Precambrian metamorphic basement may not exist in the Xing’an region.  相似文献   

12.
冀西北怀安地体高级变质表壳岩的锆石年代学研究   总被引:4,自引:3,他引:1  
蔡佳  刘平华  冀磊  施建荣 《岩石学报》2017,33(9):2811-2826
位于华北克拉通中部造山带中北段的怀安地体与内蒙孔兹岩带相接,出露高压麻粒岩和退变榴辉岩等多种高级变质岩,是洞悉华北克拉通古元古代构造演化历史的重要窗口。研究区变质表壳岩包括夕线石榴长英质片麻岩、石榴长英质粒状岩石以及紫苏黑云二长片麻岩。阴极发光图像特征显示研究区样品的锆石主要包括碎屑锆石和变质锆石,其中碎屑锆石具有岩浆结晶环带,而变质锆石为单颗粒或围绕着继承性碎屑锆石边部生长,内部结构均匀,Th/U比值较低。锆石LAICP-MS U-Pb定年结果与前人研究结果综合表明该区变质表壳岩石的碎屑锆石的207Pb/206Pb年龄主要集中在~2040Ma,其原岩形成时代与孔兹岩带变泥质岩石相近,均为~2.0Ga。变质锆石记录其变质时代为1957~1804Ma,结合前人对怀安地区变泥质岩和变基性岩变质作用和年代学研究结果,推测得出1.95~1.92Ga代表了峰期(高压)麻粒岩相变质时代,1.90~1.85Ga代表峰后减压阶段变质时代,而1.85~1.80Ga代表退变质晚期的时代。怀安地区变质岩石可能卷入了阴山陆块、鄂尔多斯陆块以及东部陆块间的先后碰撞造山过程,并持续较长时间(1.95~1.80Ga),最终拼贴为统一的整体。  相似文献   

13.
The results of Sm–Nb isotopic–geochemical studies of metasedimentary and metavolcanic rocks of the Dzheltulak Group of the central part of the Dzheltulak suture, as well as geochronological U–Th–Pb (LA ICP MS) studies of detrital zircons from metasedimentary rocks, which are considered as Paleoproterozoic in current stratigraphic schemes, are presented. The age of the youngest zircons is 170–190 Ma, whereas the age of the last stage of regional metamorphism is 140–150 Ma. Thus, the Dzheltulak Group hosts metasedimentary rocks, the age of the protolith of which ranges from 140–150 to 170–190 Ma. The detrital zircons derived from intrusive and metamorphic rocks of the Selenga–Stanovoi and Dzhugdzhur–Stanovoi superterranes.  相似文献   

14.
Subduction–accretion complexes occur widely in the Central Asian Orogenic Belt (CAOB). Due to the scarcity of fossils, the depositional timing of the Habahe flysch sequence of the subduction–accretion complex in the Chinese Altai is poorly constrained, which gave rise to much controversy in understanding the time of the basement and the tectonic evolution of the Chinese Altai. U–Pb dating of detrital zircons from the Habahe sequence in the northwestern Chinese Altai reveals a young zircon population with a mean 206Pb/238U age around 438 Ma which, together with a mean 206Pb/238U age of 411 ± 5 Ma for the overlying rhyolite of the Dongxileke Formation, brackets the time of deposition of the sequence between early Silurian and early Devonian. The age of the Dongxileke rhyolite also indicates that the overlying Baihaba Formation possibly began to be deposited in the early Devonian, though U–Pb dating of detrital zircons from this formation gave a maximum depositional age of ~ 438 Ma. The youngest detrital zircons and metamorphic grains of the Habahe sequence reveal different provenance to the sequence in the east. The youngest and metamorphic zircon grains, with early Paleozoic, Neoproterozoic and pre-Neoproterozoic populations, suggest a multi-source for the Habahe sequence. The predominantly early Paleozoic zircons, characterized by concentric zoning, high Th/U ratios and euhedral shapes, imply that the sediments of the sequence were mostly derived from a proximal magmatic source. Based on the age patterns of the Neoproterozoic and pre-Neoproterozoic populations, the Tuva–Mongol Massif, along with adjacent island arcs and metamorphic belts, may be an alternative source region for the Habahe sequence. In view of new geochemical and chronological data for granitoids and advancement in the study of regional metamorphism in the Chinese Altai, we suggest a tectonic model of subduction beneath a huge subduction–accretion complex for the evolution of the Chinese Altai in the early Paleozoic.  相似文献   

15.
通过1︰5万地质填图及剖面测制,作者在粤北大瑶山地区的震旦-寒武纪地层中首次发现多层火山岩,岩性主要为火山-沉积碎屑岩类的变质凝灰质不等粒岩屑石英砂岩、变质凝灰质不等粒长石石英砂岩、沉凝灰岩等,局部见变流纹质熔结凝灰岩。对变流纹质熔结凝灰岩、变质凝灰质砂岩用LA-ICP-MS法测定锆石U-Pb年龄,206Pb/238U年龄介于614~2869 Ma之间,年龄值较为分散,说明碎屑锆石是多来源的。火山岩年龄数据与地层时代归属矛盾,粤北大瑶山地区前泥盆纪地层的时代归属值得进一步探讨。  相似文献   

16.
尚义杂岩是冀西北地区有代表性的变质地质体,由变质表壳岩和侵入岩组成。其中的变质表壳岩曾认为是新太古代晚期蛇绿岩洋壳残片。该区也有红旗营子群存在。我们对尚义黄土窑地区尚义杂岩和红旗营子群不同类型岩石进行了锆石SHRIMP U-Pb定年。含石榴黑云斜长片麻岩(HB1410)核部锆石年龄为310~2500Ma,边部变质锆石年龄为255Ma左右。黑云片麻岩(HB1411)和石英岩(HB1415)碎屑锆石年龄都为2.5Ga左右。辉长岩(HB1518)和石英闪长岩(HB1519)岩浆锆石年龄为278~279Ma。根据这些资料和前人研究,该地区的原红旗营子群和尚义杂岩变质表壳岩主体可能不是新太古代地质作用产物,而是形成于晚古生代,由不同时代地质体组成的构造杂岩。不存在所谓的太古宙蛇绿岩残片。晚古生代时期,中亚造山带对华北克拉通北缘的影响十分强烈。  相似文献   

17.
荆山岩群是胶北地体最重要的古元古代变沉积岩系之一,经历了高角闪岩相?麻粒岩相变质与韧性变形,准确限定其沉积时代与物质来源对探究胶?辽?吉带古元古代构造演化过程具有重要意义.本文利用LA-ICP-MS(激光剥蚀电感耦合等离子质谱仪)对旌旗山地区荆山岩群禄格庄岩组中长石石英岩进行了锆石U-Pb测年和稀土元素分析.根据碎屑锆石内部结构和年龄结果,认为在最年轻一组碎屑锆石中谐和的207Pb/206Pb加权平均年龄2 120 Ma,可以大致限定其原岩的最大沉积时代,两件样品获得的变质年龄分别为1 886±12 Ma与1 969±23 Ma,结合区内禄格庄岩组被2 103~2 085 Ma二长花岗质片麻岩侵入的地质关系,初步限定旌旗山地区禄格庄岩组的沉积时代约为2 100 Ma.长石石英岩中有效碎屑锆石年龄谱图呈现2 105 Ma主峰值年龄和2 185 Ma次峰值年龄,指示旌旗山地区禄格庄岩组的主要物源为古元古代(2 200~ 2 100 Ma)中?酸性岩浆岩或再循环的产物,同时接受了少量太古宙的碎屑物质.综合胶?辽?吉带已发表的其他相关数据,认为以荆山岩群禄格庄岩组为代表的胶?辽?吉带南侧底部变沉积岩沉积时可能位于弧后盆地靠近岛弧一侧,以粉子山岩群小宋岩组为代表的胶?辽?吉带北侧底部变沉积岩则可能位于弧后盆地靠近太古宙大陆一侧.   相似文献   

18.
Early Paleozoic evolution of the northern Gondwana margin is interpreted from integrated in situ U-Pb and Hf-isotope analyses on detrital zircons that constrain depositional ages and provenance of the Lancang Group, previously assigned to the Simao Block, and the Mengtong and Mengdingjie groups of the Baoshan Block. A meta-felsic volcanic rock from the Mengtong Group yields a weighted mean 206Pb/238U age of 462 ± 2 Ma. The depositional age for the previously inferred Neoproterozoic Lancang and Mengtong groups is re-interpreted as Early Paleozoic based on youngest detrital zircons and meta-volcanic age. Detrital U-Pb zircon analyses from the Baoshan Block define three distinctive age peaks at older Grenvillian (1200–1060 Ma), younger Grenvillian (~ 960 Ma) and Pan-African (650–500 Ma), with εHf(t) values for each group similar to coeval detrital zircons from western Australia and northern India. This suggests that the Baoshan Block was situated in the transitional zone between northeast Greater India and northwest Australia on the Gondwana margin and received detritus from both these cratons. The Lancang Group yields a very similar detrital zircon age spectrum to that of the Baoshan Block but contrasts with that for the Simao Block. This suggests that the Lancang Group is underlain by a separate Lancang Block. Similar detrital zircon age spectra suggest that the Baoshan Block and the Lancang Block share common sources and that they were situated close to one another along the northern margin of East Gondwana during the Early Paleozoic. The new detrital zircon data in combination with previously published data for East Gondwana margin blocks suggests the Early Paleozoic Proto-Tethys represents a narrow ocean basin separating an “Asian Hun superterrane” (North China, South China, Tarim, Indochina and North Qiangtang blocks) from the northern margin of Gondwana during the Late Neoproterozoic-Early Paleozoic. The Proto-Tethys closed in the Silurian at ca. 440–420 Ma when this “Asian Hun superterrane” collided with the northern Gondwana margin. Subsequently, the Lancang Block is interpreted to have separated from the Baoshan Block during the Early Devonian when the Paleo-Tethys opened as a back-arc basin.  相似文献   

19.
《Precambrian Research》2001,105(2-4):331-356
The Paleoproterozoic Lower Aillik Group is a deformed metasedimentary–metavolcanic succession located in the Makkovik Province of Labrador, eastern Canada. The group is situated near the boundary between reworked Archaean gneiss of the Nain (North Atlantic) craton and juvenile Paleoproterozoic crust that was both tectonically accreted and formed on or adjacent to this craton during the ca. 1.9–1.78 Ma Makkovikian orogeny. The Lower Aillik Group is structurally underlain by Archaean gneiss and structurally overlain by ca. 1860–1807 Ma bimodal, dominantly felsic volcanic and volcaniclastic rocks of the Upper Aillik Group. We present geochemical data from metavolcanic rocks and U–Pb geochronological data from several units of the Lower Aillik Group in order to address the depositional and tectonic history of this group. U–Pb data were obtained using both thermal ionization mass spectrometry (TIMS) and laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Two quartzite units near the structural base of the Lower Aillik Group contain detrital zircons only of Archaean age, and are interpreted to have been deposited on the Nain craton during post-2235 Ma rifting and initiation of a passive continental margin. Overlying mafic metavolcanic rocks contain thin horizons of intermediate tuff, one of which is dated at 2178±4 Ma. This relatively old age, and an inferred stratigraphic relationship with underlying sedimentary units, suggest that the volcanic rocks represent transitional oceanic crust, consistent with their geochemical similarity to tholeiitic rifted margin sequences of Mesozoic age in eastern North America. A package of interlayered psammitic and semipelitic metasedimentary rocks that appears to stratigraphically overlie the mafic volcanic unit is dominated by Paleoproterozoic detrital zircons but also contains Archaean grains. This package was deposited after 2013 Ma, the age of the youngest concordant zircon. The U–Pb data imply a minimum 165 m.y. time gap between mafic volcanism and sedimentation, and are consistent with deposition of the psammite–semipelite unit in an evolving foredeep that heralded the approach of a Paleoproterozoic arc terrane. Accretion of this terrane to the Nain cratonic margin at ca. 1.9 Ga initiated the Makkovikian orogeny. Although the Lower Aillik Group is highly deformed and may contain internal tectonic boundaries or be incomplete, the U–Pb and geochemical data allow quantitative assessment of a prolonged rift-drift-basin closure cycle that characterized the Early Paleoproterozoic evolution of the southern Nain cratonic margin.  相似文献   

20.
ABSTRACT

There are voluminous ultrahigh pressure-related orthogneisses and minor metamorphic supracrustal rocks in the northeastern Sulu UHP terrane (NSL), East China. The tectonic affinities of the supracrustal rocks are crucial for unravelling the deep continental subduction processes and locating the tectonic suture between the South China (SCB) and North China (NCB) blocks. In this contribution, we report new zircon U–Pb ages and Hf isotope data for the supracrustal rocks and metagabbros in the Zeku region of the NSL. In the Zeku region, the supracrustal rocks are spatially associated with granitic gneisses, metagabbros, and eclogites. Detrital zircon U–Pb analyses yield ages between 3.39 and 0.65 Ga that cluster as three major age populations including (1) 2.15–1.68 Ga with two subpeaks at ~1.83 Ga and~1.97 Ga, (2) 2.45–2.15 Ga with a peak at ~2.37 Ga, and (3) 0.79–0.65 Ga. In addition, there is a small age population between 3.39 and 2.61 Ga. The youngest age population of 0.79–0.65 Ga indicates that the Zeku supracrustal rocks must have been deposited after 650 Ma rather than during the Palaeoproterozoic as previously thought. The 210–190 Ma metamorphic ages suggest that the Zeku rocks were affected by Triassic collision–subduction and exhumation. Most of the Archaean-Palaeoproterozoic zircons have negative εHf(t) values and two-stage Hf model ages concentrating at 2.4–3.4 Ga (peak at ~2.9 Ga), indicating that source rocks of these zircons were mainly derived from recycling of ancient crustal material. These ages, together with the Hf isotopic compositions and rock assemblages, indicate that the Zeku supracrustal rocks were mainly derived from the Precambrian basement rocks of the northern Yangzte Block and have a tectonic affinity to the SCB, rather than the NCB. Our results, together with previously published data, suggest that there are two types of supracrustal rocks with different zircon U–Pb ages and tectonic affinities in the NSL. On the basis of new data, we suggest that the surface boundary between the SCB and NCB in the Jiaodong Peninsula is a complicated tectonic mélange zone rather than a single fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号