首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This report investigates the suggestion that the pattern of plasma convection in the polar cleft region is directly determined by the interplanetary electric field (IEF). Owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents centered at noon. The effects of the hypothesized IEF driven cleft current systems on polar cap ionospheric plasma convection are investigated through a series of numerical simulations. The simulations demonstrate that this simple electrodynamic model can account for the narrow “throats” of strong dayside antisunward convection observed during periods of southward interplanetary magnetic field (IMF) as well as the sunward convection observed during periods of strongly northward IMF. Thedawn-dusk shift of polar cap convection which is related to the By component of the IMF is also accounted for by the model.  相似文献   

2.
The occurrence of the third (z-ray) component of the F2-trace on ionograms is investigated at high- and mid-latitudes. Diurnal variations show a systematic shift, with magnetic inclination, of the time of maximum occurrence. Seasonal variations show a winter maximum, and an inverse sunspot-cycle relationship exists. Maximum occurrence appears between a magnetic inclination of 70° and 80° with a fall-off either side.

Evidence is presented to suggest a z-ray association with “Spread-F” fronts, and a possible mechanism for the recording of the z-ray trace at the transmitter site is described. This involves longitudinal propagation of the o-mode at its normal reflection level, coupling at this point, and ultimate reflection for the z-ray mode as a result of sloping ionization contours belonging to “Spread-F” fronts extending in directions perpendicular to the magnetic meridian.

An association with V.L.F. emissions (“dawn-chorus”) is discussed.  相似文献   


3.
An M.F. radar (2.2 MHz) operating at Saskatoon, Canada (52°N, 107°W) has been used to produce continuous wind data ( 80–110km) from September 1978–April 1981. The 24-, 12-h tidal oscillations reveal regular summer-winter transitions; in particular the semi-diurnal tide demonstrates strikingly regular and rapid equinoctial changes over the three years. The vernal and autumnal equinox changes are clearly different in morphology. Shorter term tidal fluctuations (2d τ 10d) are compared with mean winds and gravity wave amplitudes, as well as with satellite-derived stratospheric temperatures.

Spectral analysis of monthly data sets for 1980, from 90–105 km, reveal oscillations of the expected 8-, 12-, 24-h periods, but also of 10-, 16- and 2-, 5/6d. A modulation of the “2-d” wave by the 12-h wave is suggested as a possible cause of these surprisingly regular oscillations.  相似文献   


4.
The question of the association of quasars with galaxies is re-examined using 785 quasars at |b| 30, δ − 02°30′ in the new Hewitt and Burbidge Catalog (1980) and all galaxies in the “Uppsala General Catalogue of Galaxies” (Nilson, 1973). The results of the two-point cross-correlation function are presented and they show that there are on the average 0.153 ± 0.011 more galaxies within 10'.0 of a QSO than would be expected if the QSOs were distributed randomly. We find the marginal significance of the tendency for correlation between QSOs and galaxies to increase with increasing redshifts z or apparent magnitudes V. The nearest neighbor test has also been taken to analyse the same data as well as get further evidence for the apparent association between QSOs and galaxies.  相似文献   

5.
In this paper we analyse the observational data obtained by the Chinese-made PZT in the two periods 1979 Feb – 1980 May and 1981 Dec – 1983 March. The internal accuracy of single star is found to be mu = ±13.0 ms, mφ = ±0. “144 for the first period, and mu = ±14.6 ms, mφ = ±0.” 152 for the second. Correction of star position is found by the chain method. The systematic error caused by the sealed window of the evacuated chamber and the temperature effect of the plate scale are investigated. Monthly means of time and latitude are given.  相似文献   

6.
The energy spectrum of cosmic rays with primary energies between 1014 eV and 1016 eV has been studied with the CASA-MIA air shower array. The measured differential energy spectrum is a power law (dj/dEEy) with spectral indices γ of 2.66±0.02 below approximately 1015 eV and 3.00±0.05 above. A new method is used for measuring primary energy derived from ground-based data in a compositionally insensitive way. In contrast with some previous reports, the “knee” of the energy spectrum does not appear sharp, but rather a smooth transition over energies from 1015 eV to 3.0 × 1015 eV.  相似文献   

7.
Systematic CCD photometry of Comet 1995 O1 (Hale-Bopp) began in early August 1995 shortly after its discovery (IAU Circular 6187) and continued until mid-November 1996. The light curve derived from a 34″ square centered on the nucleus shows clearly and objectively how the inner regions of the comet brightened during this 15 month period. Possible connections between sudden brightenings and reported outbursts are investigated. During the interval August–December 1995, the magnitude of the comet showed strong evidence of a periodicity of 20±5 days with a full amplitude of approximately 0.20 mag. It is noteworthy that this result spans both the period of 18 days suggested by Sekanina (1995, 1996) and the “superperiod” of 22±2 days reported by Jorda et al. (1997). However, in 1996 neither this periodicity nor any other could be detected with certainty in the photometric data.  相似文献   

8.
The upper thermosphere and F-region ionosphere system at 43°N is modelled for equinox and moderate solar conditions via a series of iterative calculations employing a thermospheric wind model and a one-dimensional ionospheric model which are mutually coupled. Several feedback loops within the system involving F2-layer peak height, F2-layer peak density, zonal wind, meridional wind, and Coriolis force are investigated to better understand the interactive aspect of ionosphere-thermosphere coupling. The interplay of primary importance involves the night-time ascent/descent of the F-layer due to equatorward/poleward neutral winds, the resulting changes in ion drag presented to the meridional and zonal wind fields, and the Coriolis force modification of the ion drag coupling. Wind shear and plasma profile shape are not significantly coupled. For magnetically undisturbed conditions, self-consistent treatment of these effects modifies a non-interactive “control” calculation by 20–35 m s−1 in the wind field. During geomagnetically disturbed periods interactive processes play a more crucial role in determining thermospheric and ionospheric storm responses. Our calculations reveal wind enhancements of up to 100 m s−1 associated with the lifting and negative-phase depletion of the F-region for prolonged magnetic disturbance conditions, the former mechanism accounting for a major portion of the effect.  相似文献   

9.
The interplanetary magnetic field (IMF) changes and the associated responses of the magnetosphere on November 1, 1972, are examined. IMF Bz changes consisted of a sudden southward turning, a slow northward turning, and a subsequent steady northward sense. Magnetospheric substorms occurred throughout this period.  相似文献   

10.
A photographic survey in four spectral regions (ultraviolet, blue, visible and red) of the Northern Hemisphere of Saturn's atmosphere, has been carried out between 1980 (epoch of the edgewise apparition of the rings) and 1987 (ring's maximum aperture), with the aim of analyzing the changes in the cloud morphology and reflectivity with respect to the spacecraft aspects in 1979 (Pioneer 11) and 1980–1981 (Voyager 1 and 2). Very few variations were detected in the meridional position of the belts and zones ; only a shift of 4000 km toward the North appeared to occur in 1984 in ultraviolet light to the region at latitude 46°N (occupied in 1980–1981 by the “ribbon” feature). Other belts and zones remained stable to ground-based telescopic resolution during the whole period. An increase of 7% in the reflectivity ratio of the belt NEB and the zone EZ, was noted in the spectral interval from 4000 to 6500 Å last year. This can be attributed to the seasonal insolation variation.  相似文献   

11.
A simultaneous, maximum-likelihood determination of the distance and kinematic parameters of the Pleiades is made. The results are: distance of the cluster d = 135.56 ± 0.72 pc, dispersion σd = 7.66 ± 0.80 pc; space velocity V = 25.94 ± 0.13 km/s, dispersion σv = 0.58 ± 0.09 km/s coordinates of the convergent point A = 101.95° ± 0.47°, D = −41.36° ± 0.29°.  相似文献   

12.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

13.
The simultaneous observations of Pc4 geomagnetic pulsations at the two temporary stations, located along the geomagnetic meridian 50 km to the North and South from the observatory Borok (L = 2.8), have been used for the investigation of amplitude gradients of both H- and D-components of these pulsations. It has been discovered that the direction of a meridional component of the gradient H (gradMH) depends on the frequency ƒ of a spectral component of pulsations. The gradMD is directed more or less permanently northward independently from the frequency ƒ These results are the consequence of a local amplification of geomagnetic pulsations due to Alfvén waves resonance along the magnetic field lines. It has been demonstrated that the frequencies ƒR for which the northward direction of gradMH is replaced by the southward one (with increasing ƒ) can be interpreted as the eigen frequencies of the field line which intersects the meridian in the middle between two temporary stations, i.e. in Borok.

The possible applications of a gradient method of measurement of the magnetic field lines' eigen frequencies are discussed.  相似文献   


14.
This paper presents some features of the ionospheric response observed in equatorial and mid-latitudes region to two strong geomagnetic storms, occurring during Oct. 19–23, 2001 and May 13–17, 2005 and to understand the phenomena of pre-storm that lead to very intense geomagnetic storms. The result point to the fact that pre-storm phenomena that leads to intense ionospheric storm are; large southward turning of interplanetary magnetic field Bz, high electric field, increase in flow speed stream, increase in proton number density, high pressure ram and high plasma beta. The magnitude of Bz turning into southward direction from northward highly depends upon the severity of the storm and the variation in F2 layer parameter at the time of geomagnetic storm are strongly dependent upon the storm intensity. A detailed analysis of the responses of the ionosphere shows that during the storm periods, foF2 values depleted simultaneously both in the equatorial and mid latitude. Observation also shows that low to moderate variations in ionospheric F2 at the pre-storm period may signal the upcoming of large ionospheric disturbances at the main phase. The ionospheric F2response for low and mid latitude does not show any significant differences during the storm main phase and the pre-storm period. The ionospheric response during the pre-storm period is thought very puzzling. The period is observed to be depleted throughout with low-moderate effect across all the stations in the low and mid latitude.  相似文献   

15.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   

16.
We present a study of the plasma properties inside and dynamics of the low-latitude boundary layer (LLBL)/cusp during the ICME event on 7 November 2004 based on data from the four Cluster spacecraft. The interplanetary magnetic field (IMF) is predominantly strongly northward, up to 50 nT, with some short-duration rotations. The observed LLBL/cusp is very thick (∼6 – 7° invariant latitude (ILAT)) and migrates equatorward with rates of 0.55° and 0.04° ILAT per minute during quick southward IMF rotations and stable northward IMF, respectively. The LLBL/cusp observed by Cluster 1 and Cluster 4 is in a fast transition between different states and is populated by different types of plasma injection, presumably coming from multiple reconnection sites. During a period of extremely northward IMF, signatures of pulsed dual reconnection inside the LLBL/cusp are observed by Cluster 3, suggesting that at least part of the LLBL/cusp is on closed field lines. However, analysis of the ion data implies that the boundary layer is formed in the dawn sector of the magnetosphere and does not slowly convect from the dayside as has been suggested previously. A statistical study of the location of the LLBL/cusp equatorward boundary during the ICME events on 28 – 29 October 2003 and 7 – 10 November 2004 is performed. During extreme conditions the LLBL/cusp position is offset by −7° ILAT from the location under normal conditions, which might be explained by the influence of the high solar wind dynamic pressure. The LLBL/cusp moves equatorward with increasing southward and northward IMF. However, the LLBL/cusp position under strong southward IMF is more poleward than expected from previous studies, which could indicate some saturation in the dayside reconnection process or enhancement of the nightside reconnection rate. The LLBL/cusp position under strong northward IMF is extremely low and does not agree with the location predicted in previous studies. For the events with solar wind dynamic pressure >10 nPa, the LLBL/cusp position does not depend on the solar wind dynamic pressure. This might indicate some saturation in the mechanism of how the LLBL/cusp location depends on the solar wind dynamic pressure.  相似文献   

17.
When the local solar zenith angle, χL, is < 105° the 6300 A line is much stronger than expected on the basis of F region ionic recombination alone. Between 95 and 105° the additional intensity is quantitatively explained by production of O(1D) from photolysis of O2 in the Schumann-Runge continuum, (λλ 1300–1750 A) using current values for solar flux, atmospheric composition and quenching of O(1D) by N2. The Schumann-Runge (SR) component exhibits a large seasonal variation with a maximum in summer. We interpret this variation as implying a seasonal change in thermospheric O2 abundance; the change seems largely to reflect a variation in O2 density at the base of the diffusive regime although some contribution may come from changes in thermospheric temperature structure. Large changes in the SR component exist from day to day and with a 27 day period following a major magnetic storm. The photodissociation source becomes inadequate when xl < 95°; at 90° more than half of the intensity comes from still another source which we identify as local photoelectron excitation of O atoms.  相似文献   

18.
Analysis of global hybrid simulations of Mercury’s magnetosphere-solar wind interaction is presented for northward and southward interplanetary magnetic field (IMF) orientations in the context of MESSENGER’s first two encounters with Mercury. The global kinetic simulations reveal the basic structure of this interaction, including a bow shock, ion foreshock, magnetosheath, cusp regions, magnetopause, and a closed ion ring belt formed around the planet within the magnetosphere. The two different IMF orientations induce different locations of ion foreshock and different magnetospheric properties: the dayside magnetosphere is smaller and cusps are at lower latitudes for southward IMF compared to northward IMF whereas for southward IMF the nightside magnetosphere is larger and exhibits a thin current sheet with signatures of magnetic reconnection and plasmoid formation. For the two IMF orientations the ion foreshock and quasi-parallel magnetosheath manifest ion-beam-driven large-amplitude oscillations, whereas the quasi-perpendicular magnetosheath shows ion-temperature-anisotropy-driven wave activity. The ions in Mercury’s belt remain quasi-trapped for a limited time before they are either absorbed by Mercury’s surface or escape from the magnetosphere. The simulation results are compared with MESSENGER’s observations.  相似文献   

19.
It is rather difficult to understand theoretically and to analyse the experimental data concerning the mass and shape distributions of fragments created by catastrophic collisions. The fragmentation process is discussed as being a purely stochastical phenomenon; the size and shape distributions obtained in this way are compared with the results of laboratory experiments. The results are presented of some computer simulations of random volume fragmentation processes; they are a 3-D generalization of the numerical experiments described in Grady and Kipp (J. Appl. Phys. 58(3), 1210–1222, 1985). The features of the size distribution are discussed, comparing it with the expectations of the Mott-Linfoot and Grady-Kipp theories. In the literature the shape of fragments is defined in terms of the ratios B/A and C/A, where A, B, C are defined as the sizes of a fragment along three orthogonal axes. The definition of the shape of a fragment cannot be considered unique, since it is not obvious in which order to define the three axes when the fragments are not ellipsoidal. A few possible methods are introduced explicity, and the resulting differences are discussed. In this light, the shape results (the mean values and the distribution of the axial ratios) obtained in recent laboratory experiments are rediscussed and critically reviewed. For what concerns the stochastical modelling, the results of various simulations, corresponding to different assumptions regarding fragmentation properties are presented. It is shown that the main features of the shape distributions from laboratory experiments cannot be satisfactorily reproduced. Comparison of the results with the outcomes of the semiempirical fragmentation model by Paolicchi et al. (Icarus 121, 126–157, 1996), as well as with some results coming out from hydrodynamical simulations, shows how only a “global” and physical model, not a purely statistical one (neither global nor “local”), can afford to reproduce the observed data.  相似文献   

20.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号