首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogen solubility and hydroxyl substitution mechanism in olivineat upper-mantle conditions are not only a function of pressure,temperature, water fugacity and hydrogen fugacity, but are alsoinfluenced by silica activity. Olivine synthesized in equilibriumwith magnesiowüstite displays hydroxyl stretching bandsin the wavenumber range from 3640 to 3430 cm–1. In contrast,olivine in equilibrium with orthopyroxene shows absorption bandsin a narrower wavenumber range from 3380 to 3285 cm–1.The two fundamentally different spectra are assigned to hydroxylin tetrahedral and octahedral sublattices, respectively. Olivinein equilibrium with orthopyroxene is also less capable of incorporatinghydroxyl, relative to olivines in equilibrium with magnesiowüstite,by about a factor of ten. A comparison of spectra obtained aspart of this study with hydroxyl spectra of natural mantle olivinesshows that the latter display hydroxyl stretching patterns reminiscentof equilibrium with magnesiowüstite, although undoubtedlyolivine in the Earth’s mantle coexists with orthopyroxene.This may be attributed to a metasomatic overprint by a low-silicafluid and/or melt that was in reaction relationship with orthopyroxene.A likely metasomatic agent is a carbonatitic melt. When carbonatiticmelts decompose to oxides and CO2, they may temporarily imposea low-aSiO2 environment inherited by the olivine structure.If this suggestion proves true, Fourier transform IR spectroscopymay be used to fingerprint metasomatic episodes in the lithosphericmantle. KEY WORDS: FTIR spectrometry; olivine; mantle; metasomatism; water  相似文献   

2.
FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration   总被引:1,自引:0,他引:1  
Our study of olivines from Canadian kimberlites shows that the application of FTIR spectroscopy significantly improves the reliability of olivine as a kimberlite indicator mineral (KIM). We have developed an algorithm that yields the water concentration and the normalized intensity of the OH IR absorption band at 3572 cm−1 from unpolished olivine grains of unknown thickness. For 80% of kimberlitic olivines these two parameters are significantly higher than those for olivines from non-kimberlitic magmas and consequently, olivines with water concentrations >60 ppm and a strong absorption band at 3572 cm−1 can be reliably classified as being kimberlitic.We have identified two major spectral features in the OH absorption bands of kimberlitic olivines that allow for a more detailed classification: (a) the presence of three types of high-requency OH absorption bands (Group 1A, 1B and 1C) and (b) the proportion of low-frequency OH absorption bands (Group 2) relative to high-frequency bands (Group 1). Comparison of our results with experimental studies suggests that differences within Group 1 OH absorption bands are due to different pressures of crystallization or hydrogenation. The three identified types of Group 1 OH absorption bands approximately correspond to high (P > 2 GPa, Group 1A), moderate (2-1 GPa, Group 1B), and low (<1 GPa, Group 1C) pressures of hydrogenation. Group 2 OH IR absorption bands in olivines with NiO > 3500 ppm are interpreted to reflect olivine-orthopyroxene equilibria and hence are indicative of xenocrystic olivine derived from lherzolitic or harzburgitic mantle sources. Interaction of xenocrystic olivine with hydrous kimberlitic melts with low silica activity likely will cause a gradual increase in Group 1 absorption bands. Therefore, FTIR spectra of olivine can be used to obtain qualitative estimates of the duration of interaction between mantle material and a kimberlitic melt.In addition to applications in kimberlite and diamond exploration, FTIR spectra of olivine phenocrysts, combined with mineral chemical data, may also provide insights into kimberlite evolution. Our data suggest that in some instances the ascent of kimberlitic magmas could have been interrupted at or near the Moho, followed by olivine crystallization and exsolution of aqueous fluids.  相似文献   

3.
Olivine + clinopyroxene ± amphibole cumulates have beenwidely documented in island arc settings and may constitutea significant portion of the lowermost arc crust. Because ofthe low melting temperature of amphibole (1100°C), suchcumulates could melt during intrusion of primary mantle magmas.We have experimentally (piston-cylinder, 0·5–1·0GPa, 1200–1350°C, Pt–graphite capsules) investigatedthe melting behaviour of a model amphibole–olivine–clinopyroxenerock, to assess the possible role of such cumulates in islandarc magma genesis. Initial melts are controlled by pargasiticamphibole breakdown, are strongly nepheline-normative and areAl2O3-rich. With increasing melt fraction (T > 1190°Cat 1·0 GPa), the melts become ultra-calcic while remainingstrongly nepheline-normative, and are saturated with olivineand clinopyroxene. The experimental melts have strong compositionalsimilarities to natural nepheline-normative ultra-calcic meltinclusions and lavas exclusively found in arc settings. Theexperimentally derived phase relations show that such naturalmelt compositions originate by melting according to the reactionamphibole + clinopyroxene = melt + olivine in the arc crust.Pargasitic amphibole is the key phase in this process, as itlowers melting temperatures and imposes the nepheline-normativesignature. Ultra-calcic nepheline-normative melt inclusionsare tracers of magma–rock interaction (assimilative recycling)in the arc crust. KEY WORDS: experimental melting; subduction zone; ultra-calcic melts; wehrlite  相似文献   

4.
The natural occurrence of hydroxide in olivine   总被引:1,自引:0,他引:1  
Polarized infrared (IR) spectra of olivine single crystals from 17 different localities show a tremendous variability in both mode and abundance of hydroxide (OH) incorporation. Kimberlitic olivines contain the most total OH at an estimated concentration level of 976 H/106Si, whereas olivines from basalts contain the least at 3 H/106Si. Olivines of metamorphic and hydrothermal origin have widely varying concentration levels intermediate between those of basalts and kimberlites. Over 30 distinct OH absorption bands have been identified. Most of these bands are not unique to individual localities but may be found in samples from several different localities. Pleochroism is consistent among localities, but relative band intensities vary. No evidence is found for molecular H2 in olivine. Hydrous minerals have been identified in olivine by their characteristic OH absorption bands. Serpentine is commonly found and is clearly distinguishable from intrinsic OH. Talc is present in one sample. Prominent OH bands at 3572 and 3525 cm?1 are attributed to humite group minerals. San Carlos, Arizona, olivines annealed in the presence of H2O develop absorption bands which are found in natural samples, however the OH absorption spectra of these annealed olivines are not identical to those of any single natural crystal. Sharp-band OH abundances in annealed samples are an order of magnitude lower than the maximum measured in natural specimens. The mechanical properties determined from these annealed olivines may not be directly applicable to mantle olivine because both the OH sites and concentrations are different.  相似文献   

5.
A technique is described for determining the cooling historyof olivine phenocrysts. The technique is based on the analysisof the diffusive re-equilibration of melt inclusions trappedby olivine phenocrysts during crystallization. The mechanismof re-equilibration involves diffusion of Fe from and Mg intothe initial volume of the inclusion. The technique applies toa single crystal, and thus the cooling history of differentphenocrysts in a single erupted magma can be established. Weshow that melt inclusions in high-Fo olivine phenocrysts frommantle-derived magmas are typically partially re-equilibratedwith their hosts at temperatures below trapping. Our analysisdemonstrates that at a reasonable combination of factors suchas (1) cooling interval before eruption (<350°C), (2)eruption temperatures (>1000°C), and (3) inclusion size(<70 µm in radius), partial re-equilibration of upto 85% occurs within 3–5 months, corresponding to coolingrates faster than 1–2°/day. Short residence timesof high-Fo phenocrysts suggest that if eruption does not happenwithin a few months after a primitive magma begins cooling andcrystallization, olivines that crystallize from it are unlikelyto be erupted as phenocrysts. This can be explained by efficientseparation of olivine crystals from the melt, and their rapidincorporation into the cumulate layer of the chamber. Theseresults also suggest that in most cases erupted high-Fo olivinephenocrysts retain their original composition, and thus compositionsof melt inclusions in erupted high-Fo olivine phenocrysts donot suffer changes that cannot be reversed. Short residencetimes also imply that large unzoned cores of high-Fo phenocrystscannot reflect diffusive re-equilibration of originally zonedphenocrysts. The unzoned cores are a result of fast efficientaccumulation of olivines from the crystallizing magma, i.e.olivines are separated from the magma faster than melt changesits composition. Thus, the main source of high-Fo crystals inthe erupted magmas is the cumulate layers of the magmatic system.In other words, olivine-phyric rocks represent mixtures of anevolved transporting magma (which forms the groundmass of therock) with crystals that were formed during crystallizationof more primitive melt(s). Unlike high-Fo olivine phenocrysts,the evolved magma may reside in the magmatic system for a longtime. This reconciles long magma residence times estimated fromthe compositions of rocks with short residence times of high-Foolivine phenocrysts. KEY WORDS: melt inclusions; olivine; picrites; residence time; diffusion  相似文献   

6.
Fe-rich dunite xenoliths within the Kimberley kimberlites compriseolivine neoblasts with minor elongated, parallel-oriented ilmenite,and rarely olivine porphyroclasts and spinel. Compared withtypical mantle peridotites, olivines in the Fe-rich duniteshave lower forsterite (Fo87–89) and NiO contents (1300–2800ppm), which precludes a restitic origin for the dunites. Chrome-richspinels are remnants of a metasomatic reaction that producedilmenite and phlogopite. Trace element compositions differ betweenporphyroclastic and neoblastic olivine, the latter having higherTi, V, Cr and Ni and lower Zn, Zr and Nb contents, documentingtheir different origins. The dunites have high 187Os/ 188Osratios (0·11–0·15) that result in youngmodel ages for most samples, whereas three samples show isotopicmixtures between Phanerozoic neoblasts and ancient porphyroclasticmaterial. Most Fe-rich dunite xenoliths are interpreted to berecrystallized cumulates related to fractional crystallizationof Jurassic Karoo flood basalt magmatism, whereas the porphyroclastsare interpreted to be remnants from a much earlier (probablyArchaean Ventersdorp) magmatic episode. The calculated parentalmagma for the most primitive olivine neoblasts in the Fe-richdunites is similar to low-Ti Karoo basalts. Modelling the crystalfractionation of the inferred parental magma with pMELTS yieldselement fractionation trends that mirror the element variationof primitive low-Ti Karoo basalts. KEY WORDS: dunite xenoliths; fractional crystallization; Karoo; large igneous province; pMELTS; Re–Os; trace elements  相似文献   

7.
A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles   总被引:2,自引:0,他引:2  
St Kitts forms one of the northern group of volcanic islandsin the Lesser Antilles arc. Eruptive products from the Mt Liamuigacentre are predominantly olivine + hypersthene-normative, low-Kbasalts through basaltic andesites to quartz-normative, low-Kandesites. Higher-Al and lower-Al groups can be distinguishedin the suite. Mineral assemblages include olivine, clinopyroxene,orthopyroxene, plagioclase and titanomagnetite with rarer amphibole,ilmenite and apatite. Eruptive temperatures of the andesitesare estimated as 963–950°C at fO2 NNO + 1 (whereNNO is the nickel–nickel oxide buffer). Field and mineralchemical data provide evidence for magma mixing. Glass (melt)inclusions in the phenocrysts range in composition from andesiteto high-silica rhyolite. Compositional variations are broadlyconsistent with the evolution of more evolved magmas by crystalfractionation of basaltic parental magmas. The absence of anycovariation between 87Sr/86Sr or 143Nd/144Nd and SiO2 rulesout assimilation of older silicic crust. However, positive correlationsbetween Ba/La, La/Sm and 208Pb/204Pb and between 208Pb/204Pband SiO2 are consistent with assimilation of small amounts (<10%)of biogenic sediments. Trace element and Sr–Nd–Pbisotope data suggest derivation from a normal mid-ocean ridgebasalt (N-MORB)-type mantle source metasomatized by subductedsediment or sediment melt and fluid. The eruptive rocks arecharacterized by 238U excesses that indicate that fluid additionof U occurred <350 kyr ago; U–Th isotope data for mineralseparates are dominated by melt inclusions but would allow crystallizationages of 13–68 ka. However, plagioclase is consistentlydisplaced above these ‘isochrons’, with apparentages of 39–236 ka, and plagioclase crystal size distributionsare concave-upwards. These observations suggest that mixingprocesses are important. The presence of 226Ra excesses in twosamples indicates some fluid addition <8 kyr ago and thatthe magma residence times must also have been less than 8 kyr. KEY WORDS: Sr–Nd–Pb isotopes; U-series isotopes; crystal size distribution; petrogenesis  相似文献   

8.
Melt inclusions are small portions of liquid trapped by growingcrystals during magma evolution. Recent studies of melt inclusionshave revealed a large range of unusual major and trace elementcompositions in phenocrysts from primitive mantle-derived magmaticrocks [e.g. in high-Fo olivine (Fo > 85 mol %), spinel, high-Anplagioclase]. Inclusions in phenocrysts crystallized from moreevolved magmas (e.g. olivine Fo < 85 mol %), are usuallycompositionally similar to the host lavas. This paper reviewsthe chemistry of melt inclusions in high-Fo olivine phenocrystsfocusing on those with anomalous major and trace element contentsfrom mid-ocean ridge and subduction-related basalts. We suggestthat a significant portion of the anomalous inclusion compositionsreflects localized, grain-scale dissolution–reaction–mixing(DRM) processes within the magmatic plumbing system. The DRMprocesses occur at the margins of primitive magma bodies, wheremagma is in contact with cooler wall rocks and/or pre-existingsemi-solidified crystal mush zones (depending on the specificenvironment). Injection of hotter, more primitive magma causespartial dissolution (incongruent melting) of the mush-zone phases,which are not in equilibrium with the primitive melt, and mixingof the reaction products with the primitive magma. Localizedrapid crystallization of high-Fo olivines from the primitivemagma may lead to entrapment of numerous large melt inclusions,which record the DRM processes in progress. In some magmaticsuites melt inclusions in primitive phenocrysts may be naturallybiased towards the anomalous compositions. The occurrence ofmelt inclusions with unusual compositions does not necessarilyimply the existence of new geologically significant magma typesand/or melt-generation processes, and caution should be exercisedin their interpretation. KEY WORDS: melt inclusions; olivine; geochemistry; mush zones; MORB; subduction-related magmas  相似文献   

9.
Mineral and melt inclusions in olivines from the most Mg-richmagma from the southern West Sulawesi Volcanic Province indicatethat two distinct melts contributed to its petrogenesis. Thecontribution that dominates the whole-rock composition comesfrom a liquid with high CaO (up to 16 wt %) and low Al2O3 contents(CaO/Al2O3 up to 1), in equilibrium with spinel, olivine (Fo85–91;CaO 0·35–0·5 wt %; NiO 0·2–0·30wt %) and clinopyroxene. The other component is richer in SiO2(>50 wt %) and Al2O3 (19–21 wt %), but contains significantlyless CaO (<4 wt %); it is in equilibrium with Cr-rich spinelwith a low TiO2 content, olivine with low CaO and high NiO content(Fo90–94; CaO 0·05–0·20 wt %; NiO0·35–0·5 wt %), and orthopyroxene. Boththe high- and low-CaO melts are potassium-rich (>3 wt % K2O).The high-CaO melt has a normalized trace element pattern thatis typical for subduction-related volcanic rocks, with negativeTa–Nb and Ti anomalies, positive K, Pb and Sr anomalies,and a relatively flat heavy rare earth element (HREE) pattern.The low-CaO melt shows Y and HREE depletion (Gdn/Ybn 41), butits trace element pattern resembles that of the whole-rock andhigh-CaO melt in other respects, suggesting only small distinctionsin source areas between the two components. We propose thatthe depth of melting and the dominance of H2O- or CO2-bearingfluids were the main controls on generating these contrastingmagmas in a syn-collisional environment. The composition ofthe low-CaO magma does not have any obvious rock equivalent,and it is possible that this type of magma does not easily reachthe Earth's surface without the assistance of a water-poor carriermagma. KEY WORDS: melt inclusions; mineral chemistry; olivine; syn-collisional magmatism; ankaramites; low-Ca magma  相似文献   

10.
High-pressure Partial Melting of Mafic Lithologies in the Mantle   总被引:17,自引:2,他引:15  
We review experimental phase equilibria associated with partialmelting of mafic lithologies (pyroxenites) at high pressuresto reveal systematic relationships between bulk compositionsof pyroxenite and their melting relations. An important aspectof pyroxenite phase equilibria is the existence of the garnet–pyroxenethermal divide, defined by the enstatite–Ca-Tschermakspyroxene–diopside plane in CaO–MgO–Al2O3–SiO2projections. This divide appears at pressures above 2 GPa inthe natural system where garnet and pyroxenes are the principalresidual phases in pyroxenites. Bulk compositions that resideon either side of the divide have distinct phase assemblagesfrom subsolidus to liquidus and produce distinct types of partialmelt ranging from strongly nepheline-normative to quartz-normativecompositions. Solidus and liquidus locations are little affectedby the location of natural pyroxenite compositions relativeto the thermal divide and are instead controlled chiefly bybulk alkali contents and Mg-numbers. Changes in phase volumesof residual minerals also influence partial melt compositions.If olivine is absent during partial melting, expansion of thephase volume of garnet relative to clinopyroxene with increasingpressure produces liquids with high Ca/Al and low MgO comparedwith garnet peridotite-derived partial melts. KEY WORDS: experimental petrology; mantle heterogeneity; partial melting; phase equilibrium; pyroxenite  相似文献   

11.
The South Auckland Volcanic Field is a Pleistocene (1·59–0·51Ma) basaltic intraplate, monogenetic field situated south ofAuckland City, North Island, New Zealand. Two groups of basaltsare distinguished based on mineralogy and geochemical compositions,but no temporal or spatial patterns exist in the distributionof various lava types forming each group within the field: GroupA basalts are silica-undersaturated transitional to quartz-tholeiiticbasalts with relatively low total alkalis (3·0–4·6wt %), Nb (7–29 ppm), and (La/Yb)N (3·4–7·6);Group B basalts are strongly silica-undersaturated basanitesto nepheline-hawaiites with high total alkalis (3·3–7·9wt %), Nb (32–102 ppm), and (La/Yb)N (12–47). GroupA has slightly higher 87Sr/86Sr, similar Nd, and lower 206Pb/204Pbvalues compared with Group B. Contrasting geochemical trendsand incompatible element ratios (e.g. K/Nb, Zr/Nb, Ce/Pb) areconsistent with separate evolution of Groups A and B from dissimilarparental magmas derived from distinct sub-continental lithosphericmantle sources. Differentiation within each group was controlledby olivine and clinopyroxene fractionation. Group B magmas weregenerated by <8% melting of an ocean island basalt (OIB)-likegarnet peridotite source with high 238U/204Pb mantle (HIMU)and enriched mantle (EMII) characteristics possibly inheritedfrom recycled oceanic crust. Group A magmas were generated by<12% melting of a spinel peridotite source also with HIMUand EMII signatures. This source type may have resulted fromsubduction-related metasomatism of the sub-continental lithospheremodified by a HIMU plume. These events were associated withMesozoic or earlier subduction- and plume-related magmatismwhen New Zealand was at the eastern margin of the Gondwana supercontinent. KEY WORDS: continental intraplate basalts; geochemistry; HIMU, EMII; Sr, Nd, and Pb isotopes; South Auckland; sub-continental lithospheric sources  相似文献   

12.
The Kap Edvard Holm Layered Series forms part of the East GreenlandTertiary Province, and was emplaced at shallow crustal level(at depths corresponding to a pressure of 1–2 kbar) duringcontinental break-up. It consists of two suites: a gabbro suitecomprising olivine and oxide gabbros, leucocratic olivine gabbrosand anorthosites, and a suite of wehrlites that formed fromthe intrusion of the gabbros during their solidification bya hydrous, high-MgO magma. Ion microprobe analyses of clinopyroxenereveal chemical contrasts between the parental melt of the wehrlitesuite and that of the gabbro suite. Thin sills (1–2 mthick) of the wehrlite suite, however, have clinopyroxene compositionssimilar to the gabbro suite, and were formed by interactionwith interstitial melts from the host layered gabbros. All evolvedmembers of the gabbro suite have elevated Nd, Zr and Sr concentrationsand Nd/Yb ratios, relative to the melt parental to the gabbrosuite. These characteristics are attributed to establishmentof a magma chamber at depths corresponding to a pressure of10 kbar, where melts evolved before injection into the low-pressuremagma chamber. Anorthosites of the gabbro suite are believedto have crystallized from such injections. The melts becamesupersaturated in plagioclase by the pressure release that followedtransportation to the low-pressure magma chamber after initialfractionation at 10 kbar. The most evolved gabbros formed bysubsequent fractionation within the low-pressure magma chamber.Our results indicate that high-pressure fractionation may beimportant in generating some of the lithological variationsin layered intrusions. KEY WORDS: fractionation; ion microprobe; layered intrusions; rift processes; trace elements *Corresponding author.  相似文献   

13.
The rate of water loss from olivine-hosted melt inclusions   总被引:1,自引:1,他引:0  
Diffusive water loss from olivine-hosted melt inclusions has been reported previously. This process must be considered when interpreting melt inclusion data. This study measured the rate of water loss from olivine-hosted melt inclusions during heating-stage experiments to test a previous diffusive reequilibration model and the hydrogen diffusion mechanism that controls the rate. Olivine-hosted melt inclusions were heated to a constant temperature in reduced Ar gas in a heating stage for a few hours, and unpolarized Fourier transform infrared spectra were repeatedly measured through the inclusions. Water loss occurred rapidly in the experiments. Within a few hours, the water absorbance at 3,500 cm−1 wavenumber decreased by half. The observed water loss rate can be explained by the diffusive reequilibration model and hydrogen diffusion in olivine coupled with metal vacancy. The beginning of water loss was different in the low- and high-temperature experiments. At low temperatures (1,423 and 1,437 K), water loss did not occur in the initial 1 or 2 h. At high temperatures (1,471–1,561 K), water loss began immediately. The initial time period without water loss at low temperatures may be explained by a hydrogen fugacity barrier in the host olivine. At low temperatures, the internal pressure may be lower than the equilibrium pressure of melt inclusion and olivine, causing lower hydrogen fugacity in the melt inclusion than in the olivine, which will delay the water loss from the melt inclusion. The tested model and diffusivity were used to estimate the rate of water loss during homogenization experiments and magma eruption and cooling. For 1-h homogenization experiment, the model shows that large inclusions (50 μm radius) in large olivines (500 μm radius) are robust against water loss, while large or small inclusions (50–10 μm radius) in small olivines (150 μm radius) may suffer 30–100% water loss. For natural samples, the correlation between water concentration and melt inclusion and olivine sizes may be helpful to infer the initial water concentration, degree of diffusive reequilibration, and magma cooling rate.  相似文献   

14.
The South Kawishiwi intrusion, located along the western marginof the Duluth Complex, Minnesota, is one of several compositeintrusions that are found in the Complex. The Duluth Complexis the principal exposed plutonic portion of the 1.1 Ga MidcontineniRift system. In the Spruce Road area the South Kawishiwi intrusionis divided into seven distinct units that are part of the broaderSouth Kawishiwi Troctolite Series defined by Severson (Tech.Rep. NRRI/TR-91/13a, Natural Resources Research Institute, Universityof Minnesota, Duluth, 1994). Units may be characterized as follows:Unit I—basal accumulation of heterogeneous gabbro, troctolite,and norite; Unit II—norite with abundant inverted pigeonite;Unit III—troctolite and olivine gabbro with local oxide-richlayers; Unit IV—mlatroctolite, troctolite, olivine gabbro;Unit VI—increased plagioclase abundance in troctolitesand leucocratic troctolites; Unit VI—strongly alteredtroctolite; Unit VII—similar to Unit V, troctolite andleucocratic troctolite. Country rocks in the Spruce Road areaare granodiorite to quartz monzonite of the Archean Giants RangeBatholith. Sutfide mineralization, consisting of 1–5 vol.% of disseminated pyrrhotitt, cubanite, chalcopyrite and pentlandite,occurs in Units I, II, III, and VI. Oxygen isotopic analysesindicate that Unit II has experienced extensive crustal contamination.18O values of Unit II range from 6.9 to 7.1% and are 18O enrichedcompared with values of 5.1–6.8% found in other units.Silica contamination is indicated based not only on 18O values,but also by the predominance of orthopyroxene in the unit. Possiblehigh-18O contaminant rocks include the Giants Range Batholithand pelitic rocks of the Lower Proterozoic Virginia Formationor Biwabik Iron Formation. Mass balance computations suggestthat units in the Spruce Road area may be related through varyingdegrees of fractionation of a high-Al, olivine tholeiite magma.Modeling of trace element concentrations and variations in mineralchemistry suggest that discontinuities within the major unitsdeveloped by in situ boundary-layer equilibrium crystallizationof solidification zones 20–50 m in thickness, followedby recharge of fresh magma. Upward enrichment of incompatibleelements, olivine Fa content, and plagioclase Ab content maybe effectively explained by this process. 18O values of uncontaminatedrock types are strongly correlative with modal mineralogy, andcan also be modeled by boundary-layer fractionation, A parentalmagma 18 O value of 6.3% is calculated for Unit VII based onolivine and plagioclase values, and is similar to that of severalother large, layered mafic intrusives. KEY WORDS: Duluth Complex; South Kawishiwi Intrusion; high-Al olivine tholeiite; open system crystallization; oxygen isotopes * Present address: Korea Basic Science Center, Isotope Research Group, Yeocun Dong 224–1, Yusung Ku, Yusung P.O. Box 41, Taejean 305–333, Korea  相似文献   

15.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   

16.
Liquidus relations in the four-component system Na2O–Al2O3–SiO2–F2O–1were studied at 0· 1 and 100 MPa to define the locationof fluoride–silicate liquid immiscibility and outlinedifferentiation paths of fluorine-bearing silicic magmas. Thefluoride–silicate liquid immiscibility spans the silica–albite–cryoliteand silica–topaz–cryolite ternaries and the haplogranite-cryolitebinary at greater than 960°C and 0· 1–100 MPa.With increasing Al2O3 in the system and increasing aluminum/alkalication ratio, the two-liquid gap contracts and migrates fromthe silica liquidus to the cryolite liquidus. The gap does notextend to subaluminous and peraluminous melt compositions. Forall alkali feldspar–quartz-bearing systems, the miscibilitygap remains located on the cryolite liquidus and is thus inaccessibleto differentiating granitic and rhyolitic melts. In peralkalinesystems, the magmatic differentiation is terminated at the albite–quartz–cryoliteeutectic at 770°C, 100 MPa, 5 wt % F and cation Al/Na =0· 75. The addition of topaz, however, significantlylowers melting temperatures and allows strong fluorine enrichmentin subaluminous compositions. At 100 MPa, the binary topaz–cryoliteeutectic is located at 770°C, 39 wt % F, cation Al/Na 0·95, and the ternary quartz–topaz–cryolite eutecticis found at 740°C, 32 wt % F, 30 wt % SiO2 and cation Al/Na 0· 95. Such location of both eutectics enables fractionationpaths of subaluminous quartz-saturated systems to produce fluorine-rich,SiO2-depleted and nepheline-normative residual liquids. KEY WORDS: silicate melt; granite; rhyolite; fluorine; liquid immiscibility  相似文献   

17.
Experiments were conducted to determine the solubilities ofH2O and CO2 and the nature of their mixing behavior in basalticliquid at pressures and temperature relevant to seqfloor eruption.Mid-ocean ridge basaltic (MORB) liquid was equilibrated at 1200°Cwith pure H2O at pressures of 176–717 bar and H2O—CO2vapor at pressures up to 980 bar. Concentrations and speciationof H2O and CO2 dissolved in the quenched glasses were measuredusing IR spectroscopy. Molar absorptivities for the 4500 cm–1band of hydroxyl groups and the 5200 and 1630 cm–1 bandsof molecular water are 0•67±0•03, 0•62±0•07,and 25±3 l/mol-cm, respectively. These and previouslydetermined molar absorptivities for a range of silicate meltcompositions correlate positively and linearly with the concentrationof tetrahedral cations (Si+Al). The speciation of water in glass quenched from vapor-saturatedbasaltic melt is similar to that determined by Silver &Stolper (Journal of Petrology 30, 667–709, 1989) in albiticglass and can be fitted by their regular ternary solution modelusing the coefficients for albitic glasses. Concentrations ofmolecular water measured in the quenched basaltic glasses areproportional to f H2O in all samples regardless of the compositionof the vapor, demonstrating that the activity of molecular waterin basaltic melts follows Henry's law at these pressures. Abest fit to our data and existing higher-pressure water solubilitydata (Khitarov et al., Geochemistry 5, 479–492, 1959;Hamilton et al., Journal of Petrology 5, 21–39, 1964),assuming Henrian behavior for molecular water and that the dependenceof molecular water content on total water content can be describedby the regular solution model, gives estimates for the Vo, mH2Oof 12±1 cm3/mol and for the 1-bar water solubility of0•11 wt%. Concentrations of CO2 dissolved as carbonate in the melt forpure CO2-saturated and mixed H2O-CO2-saturated experiments area simple function of fCO2 These results suggest Henrian behaviorfor the activity of carbonate in basaltic melt and do not supportthe widely held view that water significantly enhances the solutionof carbon dioxide in basaltic melts. Using a Vo, mr of 23 cm3/mol(Pan et al., Geochimica et Cosmochimica Acta 55, 1587–1595,1991), the solubility of carbonate in the melt at 1 bar and1200°C is 0•5 p.p.m. Our revised determination of CO2solubility is 20% higher than that reported by Stolper &Holloway (Earth and Planetary Science Letters 87, 397–408,1988). KEY WORDS: mid-ocean ridge basalts; water and carbon dioxide solubility; experimental petrology  相似文献   

18.
Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe   总被引:6,自引:1,他引:5  
The incorporation of hydrogen in mantle olivine xenocrysts from the Udachnaya kimberlite pipe was investigated by Fourier-transform infrared spectroscopy and secondary ion mass spectrometry (SIMS). IR spectra were collected in the OH stretching region on oriented single crystals using a conventional IR source at ambient conditions and in situ at temperatures down to −180°C as well as with IR synchrotron radiation. The IR spectra of the samples are complex containing more than 20 strongly polarized OH bands in the range 3,730–3,330 cm−1. Bands at high energies (3,730–3,670 cm−1) were assigned to inclusions of serpentine, talc and the 10 Å phase. All other bands are believed to be intrinsic to olivine. The corresponding point defects are (a) associated with vacant Si sites (3,607 cm−1 || a, 3,597 E || a, 3,571 cm−1 E || c, 3,567 || c, and 3,556 || b), and (b) with vacant M1 sites (most of the bands polarized parallel to a). From the pleochroic behavior and position of the OH bands associated with the vacant M1 sites, we propose two types of hydrogen—one bonded to O1 and another to O2, so that both OH vectors are strongly aligned parallel to a. The O2–H groups may be responsible for the OH bands at higher wavenumbers than those for the O1–H groups. The multiplicity of the corresponding OH bands in the spectra can be explained by different chemical environments and by slightly different distortions of the M1 sites in these high-pressure olivines. Four samples were investigated by SIMS. The calculated integral molar absorption coefficient using the IR and SIMS results of 37,500±5,000 L mol H2O cm−2 is within the uncertainties slightly higher than the value determined by Bell et al. (J Geophys Res 108(B2):2105–2113, 2003) (28,450±1,830 L mol H2O cm−2). The reason for the difference is the different distributions of the absorption intensity of the spectra of both studies (mean wavenumber 3,548 vs. 3,570 cm−1). Olivine samples with a mean wavenumber of about 3,548 cm−1 should be quantified with the absorption coefficient as determined in this study; those containing more bands at higher wavenumber (mean wavenumber 3,570 cm−1) should be quantified using the value determined by Bell et al. (J Geophys Res 108(B2):2105–2113, 2003).
Monika Koch-MüllerEmail: Phone: +49-331-2881492
  相似文献   

19.
Olivine is the principal mineral of kimberlite magmas, and isthe main contributor to the ultramafic composition of kimberliterocks. Olivine is partly or completely altered in common kimberlites,and thus unavailable for studies of the origin and evolutionof kimberlite magmas. The masking effects of alteration, commonin kimberlites worldwide, are overcome in this study of theexceptionally fresh diamondiferous kimberlites of the Udachnaya-Eastpipe from the Daldyn–Alakit province, Yakutia, northernSiberia. These serpentine-free kimberlites contain large amountsof olivine (50 vol.%) in a chloride–carbonate groundmass.Olivine is represented by two populations (olivine-I and groundmassolivine-II) differing in morphology, colour and grain size,and trapped mineral and melt inclusions. The large fragmentalolivine-I is compositionally variable in terms of major (Fo85–94)and trace element concentrations, including H2O content (10–136ppm). Multiple sources of olivine-I, such as convecting andlithospheric mantle, are suggested. The groundmass olivine-IIis recognized by smaller grain sizes and perfect crystallographicshapes that indicate crystallization during magma ascent andemplacement. However, a simple crystallization history for olivine-IIis complicated by complex zoning in terms of Fo values and traceelement contents. The cores of olivine-II are compositionallysimilar to olivine-I, which suggests a genetic link betweenthese two types of olivine. Olivine-I and olivine-II have oxygenisotope values (+ 5·6 ± 0·1 VSMOW, 1 SD)that are indistinguishable from one another, but higher thanvalues (+ 5·18 ± 0·28) in ‘typical’mantle olivine. These elevated values probably reflect equilibriumwith the Udachnaya carbonate melt at low temperatures and 18O-enrichedmantle source. The volumetrically significant rims of olivine-IIhave constant Fo values (89·0 ± 0·2 mol%),but variable trace element compositions. The uniform Fo compositionsof the rims imply an absence of fractionation of the melt'sFe2+/Mg, which is possible in the carbonatite melt–olivinesystem. The kimberlite melt is argued to have originated inthe mantle as a chloride–carbonate liquid, devoid of ‘ultramafic’or ‘basaltic’ aluminosilicate components, but becameolivine-laden and olivine-saturated by scavenging olivine crystalsfrom the pathway rocks and dissolving them en route to the surface.During emplacement the kimberlite magma changed progressivelytowards an original alkali-rich chloride–carbonate meltby extensively crystallizing groundmass olivine and gravitationalseparation of solids in the pipe. KEY WORDS: kimberlite; olivine; partial melting; carbonatitic melt; oxygen isotopes; H2O  相似文献   

20.
Empirical Solution Model for Alkalic to Tholeiitic Basic Magmas   总被引:2,自引:0,他引:2  
Currently available models to simulate naturally occurring mineral–meltequilibria use mineral components limited to tholeiitic basaltcompositions and thus they cannot be used for alkali-rick basaltsand basanites. To expand mineral–melt equilibria calculationsto alkali-rich composition space at low pressures, we have derivedequations that describe chemical equilibria between olivine–melt,pyroxene–melt, plagioclase–melt, nepheline–meltand leucite–melt components. Excess free energies of reactionsbetween the end-member mineral and melt components at equilibriumhave been expressed as a function of melt composition, temperatureand fo2. The database used to calculate the mineral–meltexpressions consists of a total of >350 anhydrous experimentsconducted under controlled oxygen fugacity defined by the quartz–fayalite–magnetite(QFM) oxygen buffer. Rocks used in these experiments range frombasanites, nephelinites and alkali olivine basalts, to tholeiiticbasalts and basaltic andesites. Using bulk compositions of startingmaterials both in this experimental database and in others thatwere not incorporated into the regression of modeled parameters,modeled equations successfully predict, at a given temperatureand fo2, compositions of multiply saturated melts as well asthe compositions of coexisting minerals. Standard deviationsof the calculated mole fractions of mineral components () areas follows: anorthite 002; forsterite 002; clinoenstatite002; enstatite 0003; nepheline 002; and leucite 001. Standarddeviations () of the calculated melt compositions in terms ofweight percent of oxides are: SiO2 0•96; Al2O3 132; Fe2O3023; FeO 121; MgO 084; CaO 079; Na2O 058; and K2O 069.All calculations were carried out using a non-linear Newton–Raphsonnumerical procedure. KEY WORDS: mineral–melt equilibria; alkalic–tholeiitic basalts; equilibrium thermodynamics *Corresponding author  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号