首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pore water profiles of total-CO2, pH, PO3?4, NO?3 plus NO?2, SO2?4, S2?, Fe2+ and Mn2+ have been obtained in cores from pelagic sediments of the eastern equatorial Atlantic under waters of moderate to high productivity. These profiles reveal that oxidants are consumed in order of decreasing energy production per mole of organic carbon oxidized (O2 > manganese oxides ~ nitrate > iron oxides > sulfate). Total CO2 concentrations reflect organic regeneration and calcite dissolution. Phosphate profiles are consistent with organic regeneration and with the effects of release and uptake during inorganic reactions. Nitrate profiles reflect organic regeneration and nitrate reduction, while dissolved iron and manganese profiles suggest reduction of the solid oxide phases, upward fluxes of dissolved metals and subsequent entrapment in the sediment column. Sulfate values are constant and sulfide is absent, reflecting the absence of strongly anoxic conditions.  相似文献   

2.
Arsenic (As) and fluoride (F?) in groundwater are increasing global water quality and public health concerns. The present study provides a deeper understanding of the impact of seasonal change on the co-occurrence of As and F?, as both contaminants vary with climatic patterns. Groundwater samples were collected in pre- and post-monsoon seasons (n = 40 in each season) from the Brahmaputra flood plains (BFP) in northeast India to study the effect of season on As and F? levels. Weathering is a key hydrogeochemical process in the BFP and both silicate and carbonate weathering are enhanced in the post-monsoon season. The increase in carbonate weathering is linked to an elevation in pH during the post-monsoon season. A Piper diagram revealed that bicarbonate-type water, with Na+, K+, Ca2+, and Mg2+ cations, is common in both seasons. Correlation between Cl? and NO3 ? (r = 0.74, p = 0.01) in the post-monsoon indicates mobilization of anthropogenic deposits during the rainy season. As was within the 10 µg L?1 WHO limit for drinking water and F? was under the 1.5 mg L?1 limit. A negative correlation between oxidation reduction potential and groundwater As in both seasons (r = ?0.26 and ?0.49, respectively, for pre-monsoon and post-monsoon, p = 0.05) indicates enhanced As levels due to prevailing reducing conditions. Reductive hydrolysis of Fe (hydr)oxides appears to be the predominant process of As release, consistent with a positive correlation between As and Fe in both seasons (r = 0.75 and 0.73 for pre- and post-monsoon seasons, respectively, at p = 0.01). Principal component analysis and hierarchical cluster analysis revealed grouping of Fe and As in both seasons. F? and sulfate were also clustered during the pre-monsoon season, which could be due to their similar interactions with Fe (hydr)oxides. Higher As levels in the post-monsoon appears driven by the influx of water into the aquifer, which drives out oxygen and creates a more reducing condition suitable for reductive dissolution of Fe (hydr)oxides. An increase in pH promotes desorption of As oxyanions AsO4 3? (arsenate) and AsO3 3? (arsenite) from Fe (hydr)oxide surfaces. Fluoride appears mainly released from F?-bearing minerals, but Fe (hydr)oxides can be a secondary source of F?, as suggested by the positive correlation between As and F? in the pre-monsoon season.  相似文献   

3.
Brucite (Mg(OH)2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H2PO4 > catechol ≥ HCO3 > ascorbate > citrate > oxalate > acetate ∼ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO43−, CO32−, F, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO42− and B(OH)4 with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation.The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg-O bonds and water coordination to Mg atoms at the surface, enhance brucite dissolution whereas bi- or polynuclear surface complexes tend to inhibit dissolution by bridging two or more metal centers and extending the cross-linking at the solid surface. Overall, results of this study demonstrate that very high concentrations of organic ligands (0.01-0.1 M) are necessary to enhance or inhibit brucite dissolution. As a result, the effect of extracellular organic products on the weathering rate of Mg-bearing minerals is expected to be weak.  相似文献   

4.
Fluoride replacement of oxygens in the GaO4Al12(OH)24(H2O)127+(aq) molecule [GaAl12] was studied via 19F nuclear magnetic resonance (NMR) at 4 < pH < 5 and 278 K in order to elucidate similar reactions at the surfaces of clays. Peaks are identified in the 19F-NMR spectra that correspond to both terminal and bridging fluorides on the GaAl12 molecule, with relative peak positions similar to those previously identified in fluoridated aluminum (hydr)oxide mineral surfaces (Nordin, J. P., Sullivan, D. J., Phillips, B. L., and Casey, W. H. [1999], “Mechanisms for fluoride-promoted dissolution of bayerite [β-Al(OH)3(s)] and boehmite [γ-AlOOH(s)]-19F-NMR spectroscopy and aqueous surface chemistry,” Geochim. Cosmochim. Acta63, 3513-3524). Fluoride substitutes for oxygen at three different sites in the GaAl12 molecule, but at dramatically different rates.The kinetics of fluoride substitution follow a rate law that includes parallel and reversible transfer of fluoride from nonbridging sites to the two bridging sites. The essential features of the rate law are as follows: (1) fluoride replaces bound water molecules (η-OH2) within minutes at 278 K at rates that are quantitatively similar to fluoride uptake by Al(H2O)63+(aq) to form AlF2+(aq) at similar conditions; (2) fluoride substitutes onto the two topologically distinct μ2-OH sites at different rates, as was previously observed for oxygen exchange, but here, the reaction is complete in hours to days at 278 K. Most importantly, rates of fluoride substitution onto μ2-OH sites are 102 times more rapid than the corresponding rates of oxygen exchange with bulk waters, indicating that fluoride considerably labilizes the molecule, as is also observed at the surfaces of minerals. The largest cause of this labilization is the reduced molecular charge on the GaAl12 upon replacement of bound waters by fluoride, which for mineral surfaces corresponds to a reduction in surface charge density.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(19-20):3261-3275
Studies on the dissolution kinetics of kaolinite were performed using batch reactors at 25°C and in the pH range from 1 to 13. A rapid initial dissolution step was first observed, followed by a linear kinetic stage reached after approximately 600 hr of reaction during which the kaolinite dissolves congruently at pH < 4 and pH > 11. The apparent incongruency between pH 5 and 10 was due to the precipitation of an Al–hydroxide phase. The true dissolution rates were computed from the amount of Si released into solution. The rate dependence on pH can be described by: r = 10−12.19aH+0.55 + 10−14.36 + 10−10.71aOH0.75Between pH 5 and 10, the rate is approximately constant, although a smooth minimum was observed at pH close to 9. mAn attempt was made to obtain a general rate law based on the coordination theory, which was first applied to the mineral dissolution studies by Stumm and co-workers. The kinetic data were combined with the results obtained for the surface speciation by Huertas et al. (1998). It is possible to express the linear dissolution rate as a simple power function of the concentration of the surface sites active in various pH ranges: r = 10−8.25 [>Al2OH2+] + 10−10.82 [>AlOH2+]0.5 + 10−9.1 [>Al2OH + >AlOH + >SiOH] + 103.78 [>Al2O + >AlO]3This equation assumes that the dissolution mechanism is mainly controlled by the two Al surface sites (external and internal structural hydroxyls, and aluminol at the crystal edges) under both acidic and alkaline conditions. The model reflects well the important contribution of the crystal basal planes to the dissolution of kaolinite.  相似文献   

6.
Most of the arid and semi-arid zones of the Indian subcontinent experience serious health problems due to high concentration of fluoride in drinking water. The Vellore District of Tamil Nadu suffers from high concentration of fluoride in water. However, most of the past studies in this region focused on tannery-related pollution and not on fluoride contamination. The present study attempts to identify the factors influencing the origin and spatial distribution of fluoride in the district. From the observed hydrochemical results of 68 well samples in the context of water level, well depth and hydrochemical parameters, F? concentration showed increasing trend in the presence of Na+ and HCO3 ?. This is due to the alkaline nature of groundwater that favors the dissolution of F?-rich minerals. The occurrence of high fluoride in Na–HCO3 type of water confirmed this hypothesis. However, Ca2+ showed an insignificant correlation with F?. The high Na/Ca ratio (>1) in 73 % of the samples and the result of Na/Na+Cl plot suggest the occurrence of cation exchange in the study area. The major source of F? was identified as products of the weathering and the dissolution of fluorites, amphiboles and micas present in the geological formations in the study area. The positive relationship between NO3 ? and F? in few wells located in agricultural fields suggest possible source of F? from the application of fertilizers. More than 25 % of the samples had higher values of fluoride than the permissible limit of drinking water according to Indian standards. Spatial distribution of fluoride showed a higher concentration in the southwest part of the study area, namely, Thirupathur and Vaniyambadi. This study shows that contamination was high in certain parts of Vellore District and the quality of water must be maintained by resorting to appropriate treatment and management strategies.  相似文献   

7.
8.
The effects of a number of inorganic anions (F, HCO3 , B(OH)4, Cl, I) and of the siderophore DFO-B on the release of As from volcanic rocks were investigated in batch experiments. While previously reported field and laboratory data support a role of inorganic anions on As mobilization into aquifers, the role of siderophores on As-induced mobilization was less investigated. Fluoride, bicarbonate and DFO-B have shown a significant influence on the release of As from the rocks. Lava was mostly affected among the investigated rocks at pH 6 and 20°C by releasing 4% of its initial As content in the presence of 0.01 M Fand 10% in the presence of 500 μM DFO-B. The effect of fluoride was larger at pH 6 than at pH 8.5 for all the rocks. In the case of DFO-B, there was also a larger effect at pH 6 compared to pH 8 for the various rocks except tuff. Bicarbonate played a role under alkaline conditions while its effect was negligible at pH 6. Anion exchange processes in the presence of fluoride and bicarbonate and complexation processes in the presence of the siderophore DFO-B appear to be the major processes responsible for the release of arsenic from the rocks. The siderophore DFO-B plays mainly an indirect role on the As release by complexing Al, Fe and Mn, thus favoring the dissolution of the rocks and the consequent release of As bound to surface Al, Fe and Mn oxy-hydroxides. These findings suggest that ionic interactions with fluoride, bicarbonate and siderophore may be a further triggering factor in the mobilization of As from aquifer rocks.  相似文献   

9.
Aluminium smelters are major sources of F emission to the environment. We studied, in laboratory experiments, the sorption and desorption of fluoride on organic and mineral horizons of soils located within 2 km from one of these factories, situated in the northern coast of Galicia (NW Spain). The soils, developed from granite, are acid (pH H2O 3.9–5.5), rich in organic matter (4–16 % C in the A horizon) and most A horizons have high Al saturation in the exchange complex. All samples showed a notable F sorption, between 1,066 and 1,589 mg kg?1, after adding 200 mg F L?1, which accounts for 53–80 % of F added. The sorption was slightly higher in the A horizons than in the respective organic horizons (differences of up to 194 mg kg?1). The fluoride sorption upon addition of 200 mg F L?1 correlated significantly (p < 0.05) with soil pH in water (r = ?0.77), iron extracted by acid ammonium oxalate (r = 0.68), aluminium plus iron extracted by acid ammonium oxalate (r = 0.63), exchange aluminium (r = 0.52) and clay percentage in soil (r = 0.76). The F sorption fitted to both Langmuir and Freundlich models. Desorbed F accounted for only 12–22 % of sorbed fluoride and correlated (p < 0.05) negatively with non-crystalline (extracted by acid ammonium oxalate) Fe (r = ?0.51) and clay content (r = ?0.74) and positively with organic matter (r = 0.69) and with the effective cation exchange capacity of the soil (r = 0.50).  相似文献   

10.
The dissolution rates of natural fluorapatite (FAP), Ca10(PO4)6F2, were measured at 25 °C in mixed-flow reactors as a function of pH from 3.0 to 11.7, and aqueous calcium, phosphorus, and fluoride concentration. After an initial preferential Ca and/or F release, stoichiometric Ca, P, and F release was observed. Measured FAP dissolution rates decrease with increasing pH at 3 ? pH ? 7, FAP dissolution rates are pH independent at 7 ? pH ? 10, and FAP dissolution rates again decrease with increasing pH at pH ? 10. Measured FAP dissolution rates are independent of aqueous Ca, P, and F concentration at pH ≈ 3 and pH ≈ 10.Apatite dissolution appears to be initiated by the relatively rapid removal from the near surface of F and the Ca located in the M1 sites, via proton for Ca exchange reactions. Dissolution rates are controlled by the destruction of this F and Ca depleted surface layer. The destruction of this layer is facilitated by the adsorption/penetration of protons into the surface at acidic conditions, and by surface hydration at neutral and basic conditions. Taking into account these two parallel mechanisms, measured fluorapatite forward dissolution rates can be accurately described using
  相似文献   

11.
Although widely investigated in relation to acid mine drainage systems at pH > 1.0, we know little about the impact of sulfuric acid (H2SO4) on the geochemistry and mineralogy of clays at pH < 1.0 (including negative pH values). Thus, laboratory batch experiments were conducted on three mixed clay samples with different mass ratios of phyllosilicates (smectite, illite, and kaolinite) to investigate the impact of H2SO4 from pH 1.0 to −3.0 for exposure periods of 14, 90, 180, and 365 days. Si and Al K- and L2,3-edge X-ray absorption near edge structure (XANES) spectroscopy were employed on these samples to determine the chemical and structural changes that occur during acidic dissolution of phyllosilicates that cannot be distinguished using X-ray diffraction analyses. A series of silicate, phyllosilicate, and Al-bearing standard compounds were also studied to provide an explanation for the observed changes in the clay samples. The Si XANES results indicated the preferential dissolution of the phyllosilicates (pH ? 1.0, t ? 14 d), the persistence of quartz even at pH ? −3.0 and t ? 365 d, and the formation of an amorphous silica-like phase that was confined to the surface layer of the altered clay samples at pH ? 0.0 and t ? 90 d). Al XANES results demonstrated dissolution of Al-octahedral layers (pH ? 1.0, t ? 14 d), the persistence of four-fold relative to six-fold coordinated Al, and the precipitation of an Al-SO4-rich phase (pH ? −1.0, t ? 90 d). An existing conceptual model of phyllosilicate dissolution under extremely acidic conditions was modified to include the results of this study.  相似文献   

12.
India has an increasing incidence of fluorosis, dental and skeletal, with nearly about 62 million people at risk. High fluoride groundwaters are present especially in the hard rock areas of the country. This paper analyzes the most extensive database on fluoride and other chemical constituent distribution in the coastal hard rock aquifers of Thoothukudi district. A total of 135 samples were collected and analyzed for major cations and anions to assess the geochemical process. The fluoride concentration in drinking waters varied from BDL to 3.2 mg?l?1 in the study area. Majority of the samples do not comply with WHO standards for most of the water quality parameters. The saturation index of fluorite saturation index was used to correlate with F? to identify their relationship to increase of fluoride levels. The correlation between the F? concentration and the water type was also attempted. Spatial distribution of fluoride in groundwater was studied to understand the influencing factors. The relationship of F? with HCO? 3, Na+ and pH concentrations were studied and found that HCO? 3, has good correlation with F? than the other parameters.  相似文献   

13.
Excess fluoride in groundwater affects the human health and results in dental and skeletal fluorosis. Higher concentration of fluoride was noted in hard rock terrain of the south India, in the Krishnagiri district of Tamilnadu. The region has a complex geology ranging from ultra basic to acid igneous rocks, charnockite and gneissic rocks. Thirty-four groundwater samples were collected from this study area and analysed for major cations and anions along with fluoride. The order of dominance of cations is Na+?>?Mg2+?>?Ca2+?>?K+ and the anions in the following order HCO3 ??>?Cl??>?NO3 ??>?SO4 2?. It is found that nearly 58 % of the samples have more fluoride ranging from 1 to 3 mg/L. It is also noted that high fluoride waters correspond to magnesium water types. This is due to the release of fluoride from the magnesium-bearing minerals like, biotite, hornblende, etc., or weathering of apatite/hydroxyapatites found in charnockites.  相似文献   

14.
The dissolution of siderite (FeCO3) and rhodochrosite (MnCO3) under oxic and anoxic conditions is investigated at 298 K. The anoxic dissolution rate of siderite is 10−8.65 mol m−2 s−1 for 5.5 < pH < 12 and increases as [H+]0.75 for pH < 5.5. The pH dependence is consistent with parallel proton-promoted and water hydrolysis dissolution pathways. Atomic force microscopy (AFM) reveals a change in pit morphology from rhombohedral pits for pH > 4 to pits elongated at one vertex for pH < 4. Under oxic conditions the dissolution rate decreases to below the detection limit of 10−10 mol m−2 s−1 for 6.0 < pH < 10.3, and hillock precipitation preferential to steps is observed in concurrent AFM micrographs. X-ray photoelectron spectroscopy (XPS) and thermodynamic analysis identify the precipitate as ferrihydrite. At pH > 10.3, the oxic dissolution rate is as high as 10−7.5 mol m−2 s−1, which is greater than under the corresponding anoxic conditions. A fast electron transfer reaction between solution O2 or [Fe3+(OH)4] species and surficial >FeII hydroxyl groups is hypothesized to explain the dissolution kinetics. AFM micrographs do not show precipitation under these conditions. Anoxic dissolution of rhodochrosite is physically observed as rhombohedral pit expansion for 3.7 < pH < 10.3 and is chemically explained by parallel proton- and water-promoted pathways. The dissolution rate law is 10−4.93[H+] + 10−8.45 mol m−2 s−1. For 5.8 < pH < 7.7 under oxic conditions, the AFM micrographs show a tabular precipitate growing by preferential expansion along the a-axis, though the macroscopic dissolution rate is apparently unaffected. For pH > 7.7 under oxic conditions, the dissolution rate decreases from 10−8.45 to 10−9.0 mol m−2 s−1. Flattened hillock precipitates grow across the entire surface without apparent morphological influence by the underlying rhodochrosite surface. XPS spectra and thermodynamic calculations implicate the precipitate as bixbyite for 5.8 < pH < 7.7 and MnOOH (possibly feitnkechtite) for pH >7.7.  相似文献   

15.
The hydrogeochemistry of groundwater in rural parts of Birbhum district, West Bengal, India, has been studied to understand the contaminants and prime processes involved in their enrichment with a focus on F? concentration. The lithological units consist of Quaternary alluviums with underlying Rajmahal basaltic rocks of Middle Jurassic age. Groundwater occurs in the alluviums, weathered residuum and fracture zone of Rajmahal rocks. Studies show elevated concentration of Cl?, SiO2, Fe and F?; excess Cl? is attributed to anthropogenic inputs, SiO2 is ascribed to high degree of weathering of silica rich host rocks, and high Fe is due to the interaction of water with Fe-rich sediments under reducing condition. The F? concentration is found high (>1.20 mg/L) mainly in water from Rajmahal rocks revealing a lithological control on F? enrichment. The weathering of silicates and ion exchange are the leading controlling processes for major ions in groundwater. The F? enrichment is due to the dissolution of F?-bearing minerals and perhaps also through anion exchange (OH? for F?) on clay minerals at high alkaline conditions; precipitation of CaCO3 favours CaF2 dissolution leading to elevated F? concentration. CaHCO3, the dominant water type, contains low F? while NaHCO3 and NaCl types exhibit high F? concentrations. Among the three spatial associations, Cluster-1 and Cluster-2 are CaHCO3 type; Cluster-3 shows NaHCO3 and NaCl waters with low Ca2+ and Mg2+ and high Na+ contents. Cluster-1 and Cluster-2 waters are, in general, drinkable barring the elevated Fe content, while Cluster-3 water is unsafe for drinking due to the high F? concentration.  相似文献   

16.
The dissolution of well crystallized gibbsite far at from equilibrium was studied in batch and mixed flow through reactors. The dissolution experiments were carried out between pH 2 and 6 in the presence of 10 mmol L−1 citrate, at pH 2 and 3 in the presence of 10 mmol L−1 chloride, nitrate, and sulfate, and at pH 2 and 3 in the presence of 1.5 mmol L−1 silica at 20°C. The dissolution rate of gibbsite, RAl (mol m−2 s−1), increases in the order of chloride ≈ nitrate < silica < sulfate ≈ citrate. In presence of silica, sulphate, and citrate dissolution is catalysed by the formation of aluminium complexes at the gibbsite surface (pH 2 and 3). From pH 2 to 3 no effect of RAl on hydrogen activity is predicted as singly coordinated surface sites at the edges of the platy gibbsite crystals, [≡AlOH2+0.5] ≈ [≡AlOH], are almost saturated with protons. However at pH >3 dissolution is slowed by a decrease of [≡AlOH2+0.5].Gibbsite dissolution rates measured in closed and open systems were identical within the experimental and analytical uncertainty. This observation indicates that gibbsite dissolution is a surface controlled process. If dissolution of gibbsite occurs close to equilibrium RAl values may be predicted by an approximately linear function of ΔGr.  相似文献   

17.
Steady-state silica release rates (rSi) from basaltic glass and crystalline basalt of similar chemical composition as well as dunitic peridotite have been determined in far-from-equilibrium dissolution experiments at 25 °C and pH 3.6 in (a) artificial seawater solutions under 4 bar pCO2, (b) varying ionic strength solutions, including acidified natural seawater, (c) acidified natural seawater of varying fluoride concentrations, and (d) acidified natural seawater of varying dissolved organic carbon concentrations. Glassy and crystalline basalts exhibit similar rSi in solutions of varying ionic strength and cation concentrations. Rates of all solids are found to increase by 0.3-0.5 log units in the presence of a pCO2 of 4 bar compared to CO2 pressure of the atmosphere. At atmospheric CO2 pressure, basaltic glass dissolution rates were most increased by the addition of fluoride to solution whereas crystalline basalt rates were most enhanced by the addition of organic ligands. In contrast, peridotite does not display any significant ligand-promoting effect, either in the presence of fluoride or organic acids. Most significantly, Si release rates from the basalts are found to be not more than 0.6 log units slower than corresponding rates of the peridotite at all conditions considered in this study. This difference becomes negligible in seawater suggesting that for the purposes of in-situ mineral sequestration, CO2-charged seawater injected into basalt might be nearly as efficient as injection into peridotite.  相似文献   

18.
A hypothesis is presented that the dissolution of albite includes the exchange of sodium for hydrogen ion in a surface layer of the mineral and the structural collapse of the residual anionic lattice of the layer. The ion exchange is described by the first law of diffusion (D25°C = 3 × 10?22 and 1.5 × 10?20 cm2sec?1 at PCO2 = 0 and 26.2 atm, respectively). The surface residual layer reaches a steady-state thickness ranging from n × 10?8 to n × 10?5 cm according to the temperature and PCO2. The increase in aqueous sodium with time in a continuous ground-water system is described by a simple exponential equation. The equation is used to estimate the percolation time of ground water from the data on the chemical composition of a water sample. The probable times range from 14 to 3840 days for various ground-water systems and are compared to the times of percolation calculated from the geothermal and hydraulic data. Both estimates are found to be in general agreement. The concentrations of Al and Si in cold water from granitic rocks are shown to be controlled by the chemical equilibrium with respect to an aged aluminosilicate. The aluminosilicate precipitates from ground water as an amorphous isoelectric solid. Its chemical composition is represented by a simplified stoichiometric formula [Al(OH)3](1?x)[SiO2]x and varies linearly with pH of the solution. The atoms of Al, O and H tend to occupy a fixed position in the solid given by the gibbsite structure upon aging in the field. The solubility product of the solid is estimated from the published data on experimental and field research into the dissolution of feldspars: logK = (1 ? x) × log [Al3+] + xlog [H4SiO4] ? (3 ? 3x) log [H+] = 8.56 ? 11.26x, where x is the molar fraction of silica in the aluminosilicate.  相似文献   

19.
A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5?×?10?17?<?k min <10?15?m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10?21?<?k?<?10?7?m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.  相似文献   

20.
A data base summarising the stability constants of more than 500 complexes is used to calculate speciation pictures for 58 trace elements in model seawater (pH 8.2) and freshwaters (pH 6 and 9). Consideration of the results provides a general summary of the chemical periodicity of the speciation of trace components in natural waters. The polarising power of an element ((cation charge)2/(radius), z2/r) provides a useful index to the degree of hydrolysis in aqueous solution. The fully hydrolysed elements with a high polarising power form distinct groupings in the periodic table. The relative magnitudes of the acid dissociation constants are summarised by Pauling's rules and the speciation of the fully hydrolysed elements in natural waters largely depends on pH and, to a lesser extent, on interactions with the major cations. The remaining cations of low and intermediate polarising power can be subdivided according to their tendency to form covalent bonds. An empirical parameter Δβ(= logβ0MF ? log β0MCl) is used to define (a)-type (Δβ > 2), borderline (a)-type (2 >Δβ > 0), (b)-type (Δβ < ?2) and borderline (b)-type (0 >Δβ > ?2) cations. Again these various categories form coherent groupings on the periodic table. By considering the interactions of cations from the various categories with the inorganic ligands commonly encountered in natural waters it is possible to assign the ligands themselves to ‘hard’ (e.g. F?, SO42?), ‘intermediate’ (e.g. OH?, CO2?3) and ‘soft’ categories (e.g. Cl?). These concepts can be summarised by constructing a Complexation Field Diagram in which the various cations are located on a plot of z2r vs δβ. The extension of the model to include redox equilibria and additional ligands is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号