首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 634 毫秒
1.
The experimental dissolution of zircon into a zircon-undersaturated felsic melt of variable water content at high pressure in the temperature range 1,020° to 1,500° C provides information related to 1) the solubility of zircon, 2) the diffusion kinetics of Zr in an obsidian melt, and 3) the rate of zircon dissolution. Zirconium concentration profiles observed by electron microprobe in the obsidian glass adjacent to a large, polished zircon face provide sufficient information to calculate model diffusion coefficients. Results of dissolution experiments conducted in the virtual absence of water (<0.2% H2O) yield an activation energy (E) for Zr transport in a melt ofM=1.3 [whereM is the cation ratio (Na+K+2Ca)/(Al·Si)] of 97.7±2.8 kcal-mol?1, and a frequency factor (D 0) of 980 ?580 +1,390 cm2-sec?1. Hydrothermal experiments provide an E=47.3±1.9 kcal-mol?1 andD 0=0.030 ?0.015 +0.030 cm2-sec?1. Both of these results plot close to a previously defined diffusion compensation line for cations in obsidian. The diffusivity of Zr at 1,200° C increases by a factor of 100 over the first 2% of water introduced into the melt, but subsequently rises by only a factor of five to an apparent plateau value of ~2×10?9 cm2-sec?1 by ~6% total water content. The remarkable contrast between the wet and dry diffusivities, which limits the rate of zircon dissolution into granitic melt, indicates that a 50 μm diameter zircon crystal would dissolve in a 3 to 6% water-bearing melt at 750° C in about 100 years, but would require in excess of 200 Ma to dissolve in an equivalent dry system. From this calculation we conclude that zircon dissolution proceeds geologically instantaneously in an undersaturated, water-bearing granite. Estimates of zircon solubility in the obsidian melt in the temperature range of 1,020° C to 1,500° C confirm and extend an existing model of zircon solubility to these higher temperatures in hydrous melts. However, this model does not well describe zircon saturation behavior in systems with less than about 2% water.  相似文献   

2.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   

3.
The concentrations and behavior of oxygen and oxide ion were studied in silicate melts of composition CaO · MgO · xSiO2 (1.25 ≤ x ≤ 3) in the temperature range 1425 to 1575°C by cyclic voltammetry and chronopotentiometry. Electroreduction of oxygen is a reversible, 2 electron process involving dissociated oxygen atoms. The Henry's Law constant for O2 in molten diopside (CaO · MgO · 2SiO2) is 0.023 ± 0.004 mole/l atm at 1450°C. The diffusion coefficient for molecular oxygen in diopside melt is 4.5 ± .5 × 10?6 cm2/sec at 1450°C and the activation energy of diffusion is 80 ± 2 kcal/mole. Oxide ions produced by electroreduction of oxygen, rapidly dissociate silicate polymers, causing the concentration of free oxide ions in diopside melt to be buffered at a low level (4.7 ± .8 × 10?5 mole/l). The concentration of free oxide ion increases at higher proportions of metal oxides but remains at this value in more silicic melts. The rate of formation of oxide ions by polymerization in diopside melt is 0.021 ± .007 mole/l sec. Thermodynamic parameters (the standard free energy, enthalpy and entropy) for the oxidation of Ni, Co, and Zn in diopside melt in equilibrium with gaseous oxygen agree with those for solid oxide systems. The platinum reference electrode in molten diopside is a reversible, oxygen electrode.  相似文献   

4.
The kinetics of oxygen isotope self-diffusion in natural samples of hornblende, tremolite, and richterite have been measured. Samples were run under hydrothermal conditions using 18O enriched water. Profiles of 18O(16O + 18O)vs depth into the crystal were obtained using an ion microprobe; the depths of sputtered holes were measured using an optical interferometer. At 1000 bars (100 MPa) water pressure, the activation energies (Q) and pre-exponential factors (D0) for diffusion parallel to c are: D0(cm2/sec) Q (kcal/gm-atom) T (°C) Hornblende 1+20?1 × 10?741 ± 6 650–800 Tremolite 2+30?2× 10?8 39 ± 5 650–800 Richterite 3+5?2 × 10?4 57 ± 2 650–800The diffusion coefficient (D) for hornblende at 800°C and 1000 bars water pressure measured parallel to the c crystallographic direction is at least ten times greater than that parallel to the a or b directions. An increase in water pressure from 200 to 2000 bars increases D by a factor of 2.7 for diffusion parallel to c at 800°C. The D value for hornblende at 800°C is about 0.01 that for quartz and 0.001 that for anorthite. As a result, closure temperatures for oxygen exchange in natural primary amphiboles are significantly higher than for quartz or feldspars. It is unlikely that amphiboles will exchange oxygen isotopes by diffusion under most crustal conditions.  相似文献   

5.
A hypothesis is presented that the dissolution of albite includes the exchange of sodium for hydrogen ion in a surface layer of the mineral and the structural collapse of the residual anionic lattice of the layer. The ion exchange is described by the first law of diffusion (D25°C = 3 × 10?22 and 1.5 × 10?20 cm2sec?1 at PCO2 = 0 and 26.2 atm, respectively). The surface residual layer reaches a steady-state thickness ranging from n × 10?8 to n × 10?5 cm according to the temperature and PCO2. The increase in aqueous sodium with time in a continuous ground-water system is described by a simple exponential equation. The equation is used to estimate the percolation time of ground water from the data on the chemical composition of a water sample. The probable times range from 14 to 3840 days for various ground-water systems and are compared to the times of percolation calculated from the geothermal and hydraulic data. Both estimates are found to be in general agreement. The concentrations of Al and Si in cold water from granitic rocks are shown to be controlled by the chemical equilibrium with respect to an aged aluminosilicate. The aluminosilicate precipitates from ground water as an amorphous isoelectric solid. Its chemical composition is represented by a simplified stoichiometric formula [Al(OH)3](1?x)[SiO2]x and varies linearly with pH of the solution. The atoms of Al, O and H tend to occupy a fixed position in the solid given by the gibbsite structure upon aging in the field. The solubility product of the solid is estimated from the published data on experimental and field research into the dissolution of feldspars: logK = (1 ? x) × log [Al3+] + xlog [H4SiO4] ? (3 ? 3x) log [H+] = 8.56 ? 11.26x, where x is the molar fraction of silica in the aluminosilicate.  相似文献   

6.
Trace element partitioning in plagioclase feldspar   总被引:4,自引:0,他引:4  
Compilation and interpretation of experimental and natural Nernst partition coefficient (plagioclase/meltD) data show that, with a few exceptions, increases in plagioclase/meltD correlate with decreasing anorthite-content of plagioclase. In contrast, increases of plagioclase/meltD for Ga, Sc, Cu, Zn, Zr, Hf and Ti, are better correlated against decreasing melt MgO or increasing melt SiO2 contents. plagioclase/meltD for Ti and the rare earth elements (REE) show little dependence on temperature, but increase as the melt water content increases. plagioclase/meltD for K and Sr are sensitive to pressure. Variations of D0 (the strain compensated partition coefficient), r0 (the size of the site into which REE substitute), and E (Young’s Modulus of this site) were parameterized against variations of melt SiO2, the An-content of plagioclase, and other combinations of variables, allowing plagioclase/meltDREE-Y to be calculated from a variety of input parameters. The interrelations of temperature, melt MgO and SiO2 content, and plagioclase anorthite-content for wet and dry systems were also parameterized to facilitate interpolation where such data are lacking. When combined, these semi-empirical parameterizations yield plagioclase/meltD results comparable to available experimental and natural data.  相似文献   

7.
《Geochimica et cosmochimica acta》1999,63(23-24):3983-3995
Exact solutions to equations governing isothermal diffusive dissolution of a crystalline slab in a ternary liquid were obtained to include the effect of coupled chemical diffusion in the liquid. These analytical results, supplemented by approximate solutions valid for slow dissolving, provide new insights into the characteristics of diffusive dissolution in ternary systems. Dissolution rate is proportional to square root of time in diffusive dissolution. The coefficient of proportionality is a function of diffusion coefficients, liquidus relation, melt composition at the crystal–melt interface, and compositions of the dissolving crystal and starting melt. In the limit of slow dissolving, the dissolution rate can be written in terms of three dimensionless parameters that are functions of the aforementioned parameters. Dissolution rate is proportional to the diffusion rate of the slow eigen component in the melt when the diffusion rate of the minor eigen component is much slower than the diffusion rate of the major eigen component.Laboratory experiments of diffusive dissolution of single crystals and polycrystalline aggregates of quartz in a haplodacitic melt (25 wt.% CaO, 15 wt.% Al2O3, and 60 wt.% SiO2) were conducted at 1500°C and 1 GPa. Measured dissolution distances (Xb, in microns) are proportional to the square root of experimental run time (t, in seconds), Xb = −0.620 (±0.019) √t. Chemical concentration profiles measured from quenched melts are invariant with time when displayed against the distance (measured from the crystal–melt interface) normalized by the square root of time. The melt compositions at the crystal–melt interface, extrapolated from the measured diffusion profiles in the quenched melts, are within 0.2 wt.% of the independently measured quartz liquidus in the ternary CaO–Al2O3–SiO2 at 1500°C and 1 GPa. These results suggest that crystal and melt are in chemical equilibrium at their interface shortly after the onset of dissolution. Diffusive dissolution of quartz and quartzite is characterized by slow dissolving. Using quartz liquidus as one of the boundary conditions, it has been shown that the calculated dissolution distances and concentration profiles are in good agreement with the experimentally measured ones. Coupled diffusion played an essential role in quartz and quartzite dissolution in haplodacitic to haplobasaltic melts, and is likely to play an important role in diffusion-limited kinetic processes such as crystal growth and dissolution in natural melts of basaltic–rhyolitic compositions.  相似文献   

8.
The measurement of diffusion coefficients for Na, K, Rb and Cs has been realized by the technique of active salt deposits on glasses of albite and orthoclase composition, at normal pressure and in the temperature range 300–1000°C. The values of D are between 10?6 and 10?12 cm2 s?1 and, for every type of run, they vary with temperature according to Arrhenius laws, with activation energies ranging from 13 to 68 kcal mole?1. These important variations are related to the size of the diffusing element (at 700°C in albite glass DNa/DK/DRbDCs ~- 107/105/103/1) and to the size of the major alkali element (for rubidium at 800°C Dor·gl/Dab·gl ~- 20). By comparison with available data on diffusion in feldspars, we emphasize the influence of the defect density on the diffusion process.  相似文献   

9.
Calcium-45 was used as a radiotracer to measure self-diffusion coefficients for Ca in a sodium-calcium-aluminosilicate melt (29% Na2O, 5% CaO, 10% Al2O3, 56% SiO2) at temperatures in the range 1100–1400°C and pressures to 30 kbar. Calcium diffusivity (DCa) was found to depend upon both temperature and pressure in a complex but systematic manner: (?DCa?P)T is always negative and has a larger absolute value at lower temperatures; (?DCa?T)P is positive and increases with increasing pressure. The overall dependence of DCa upon T and P is given approximately by DcaT.P = [0.0025 exp(-23,107RT)] exp [P(0.7297T ? 1261.32)RT]. When expressed in terms of volume (Va) and energy (E) of activation, the results are as follows: Va ranges from 2.2 cm3/mole at 1400°C to 11.9 cm3/mole at 1100°C. and E ranges from 25.4 kcal/mole (1 kban to 49.8 kcal/mole (20 kbar).From the systematic dependence of DCa upon T and P, it is concluded that diffusion of Ca2+ in silicate melts does not take place by means of a vacant site mechanism, but is controlled instead by the amount and distribution of free volume in the melt structure.If it is assumed that the viscosity of the melt used in this study decreases with increasing pressure (Kushiro, 1976, J. Geophys. Res.81, 6351–6356) as DCa does, then the Stokes-Einstein inverse relation between viscosity and diffusivity is clearly violated, and its validity for silicate melts must be questioned. Thus, it appears that in silicate melts, unlike many liquids, viscous flow and diffusion are fundamentally different transport processes, involving different structural units.The effect of pressure on calcium diffusion is too small to invalidate kinetic models of upper mantle processes that have been based upon diffusivity values measured at 1 atm. Pressure may, however, induce significant reductions in the diffusion rates of large ions such as Rb+ or SiO4?4 in silicate melts.  相似文献   

10.
The self-diffusion of oxygen has been measured for three silicate melts along the join diopsideanorthite. The experiments were done by isotope exchange between an “infinite” reservoir of oxygen gas and spheres of melt. The oxygen self-diffusion coefficients for the three melts are given as: C-1(diopside): D = 1.64 × 101 exp(?(63.2 ± 20)(kcal/mole)/RT) cm2/sec C-2(Di58An42): D = 1.35 × 10?1 exp(?(46.8 ± 9)(kcal/mole)/RT) cm2/sec C-3(Di40An60): D = 1.29 × 10?2 exp(?(44.2 ± 6)(kcal/mole)/RT) cm2/secThe self-diffusion coefficients do not agree with the Eyring equation unless mean ionic jump distances (λ) considerably larger than the diameter of oxygen anion are assumed. However, the sense of variation of the actual diffusivities is as the Eyring equation predicts.Consideration of the results of this study and the bulk of previous work shows that oxygen appears to conform to the compensation law for cationic diffusion in silicate melts and glasses. The range of oxygen diffusivities was also found to encompass the field of divalent cation diffusivities in silicate melts.Those results imply that the diffusion of oxygen in silicate melts may involve a contribution from a cation-like diffusion mechanism (discrete O2? anions) as well as contributions from the diffusion of larger structural units.  相似文献   

11.
The dissolution of chrysotile is studied in regard to the surfaces analysis by photoelectron spectrometry. After leaching of chrysotile (Provenance: Thetford; about 200 mg of fibers of 1 cm length) in nonstirred 0.1 N oxalic conditions, the composition of the mineral surfaces is determined by XPS; kinetic curves of dissolution are given in the range 22–80°C. Two conditions for the rate-limiting step are involved for the explanation of the dissolution: diffusion of Mg2+ through the fibrous gel or dissociation of chrysotile. By the former, some values of the diffusion coefficient are proposed: D varies from 5·10?19 cm2s?1 to 5·10?16 cm2s?1, in the range 22–80°C. By the second model, the leaching rate is estimated from 3 Å (22°C) per h to 250 Å (80°C) per h. For the 2 models, the activation heat energy is in the range 15–20 Kcal.  相似文献   

12.
Diffusivities of bivalent cations. Mg, Ni. Mn and Ca, in olivine were determined experimentally. The diffusivities of Ni and Mn in forsterite were determined by couple annealing between Ni2SiO4 and Mg2SiO4, and Mn2SiO4 and Mg2SiO4, respectively. The diffusivities of Mg and Ca in forsterite were determined by the use of 26Mg and Ca tracers, respectively. Combined with other published results, the diffusion coefficients for bivalent cation diffusion in pure forsterite along the c crystallographic axis range from 2.45 × 10?11 to 1.4 × 10?13 cm2 sec?1 at 1200°C, in the order of Fe > Mn > Co > Ni > Mg > Ca. The results suggest that the diffusivity is governed by at least two factors, i.e. the size of the diffusing ionic species and the change of defect density in the crystal structure which is induced by substitution of diffusing ion for Mg ion.  相似文献   

13.
The diffusion, substitution mechanism and solubility limits of Zr and Hf in synthetic forsterite (Mg2SiO4) and San Carlos olivine (Mg0.9Fe0.1)2SiO4 have been investigated between 1,200 and 1,500 °C as a function of the chemical potentials of the components in the system MgO(FeO)–SiO2–ZrO2(HfO2). The effect of oxygen fugacity and crystallographic orientation were also investigated. The solubilities of Zr in forsterite are highest and diffusion fastest when the coexisting three-phase source assemblage includes ZrSiO4 (zircon) or HfSiO4 (hafnon), and lower and slower, respectively, when the source assemblage includes MgO (periclase). This indicates that Zr and Hf substitute on the octahedral sites in olivine, charge balanced by magnesium vacancies. Diffusion is anisotropic, with rates along the crystal axes increasing in the order a < b < c. The generalized diffusion relationship as a function of chemical activity (as \(a_{{{\text{SiO}}_{2} }}\)), orientation and temperature is: \(logD_{\text{Zr}} = \frac{1}{4}loga_{{{\text{SiO}}_{2} }} + logD_{0} - \left( {\frac{{368 \pm 17\;{\text{kJ}}\;{\text{mol}}^{ - 1} }}{{2.303\;{\text{RT}}}}} \right)\) where the values of log D 0 are ?3.8(±0.5), ?3.4(±0.5) and ?3.1(±0.5) along the a, b and c axes, respectively. Most experiments were conducted in air (fO2 = 10?0.68 bars), but one at fO2 = 10?11.2 bars at 1,400 °C shows no resolvable effect of oxygen fugacity on Zr diffusion. Hf is slightly more soluble in olivine than Zr, but diffuses slightly slower. Diffusivities of Zr in experiments in San Carlos olivine at 1,400 °C, fO2 = 10?6.6 bars are similar to those in forsterite at the same conditions, showing that the controls on diffusivities are adequately captured by the simple system (nominally iron-free) experiments. Diffusivities are in good agreement with those measured by Spandler and O’Neill (Contrib Miner Petrol 159:791–818, 2010) in San Carlos olivine using silicate melt as the source at 1,300 °C, and fall within the range of most measurements of Fe–Mg inter-diffusion in olivine at this temperature. Forsterite–melt partitioning experiments in the CaO–MgO–Al2O3–SiO2–ZrO2/HfO2 show that the interface concentrations from the diffusion experiments represent true equilibrium solubilities. Another test of internal consistency is that the ratios of the interface concentrations between experiments buffered by Mg2SiO4 + Mg2Si2O6 + ZrSiO4 or Mg2SiO4 + ZrSiO4 + ZrO2 (high silica activity) to those buffered by Mg2SiO4 + MgO + ZrO2 (low silica activity) agree well with the ratios calculated from thermodynamic data. This study highlights the importance of buffering chemical potentials in diffusion experiments to provide constraints on the interface diffusant concentrations and hence validate the assumption of interface equilibrium.  相似文献   

14.
The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:
$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$
with Ea(Ni) = ? 284.3 kJ mol?1 and Ea(Co) = ? 275.9 kJ mol?1, with an uncertainty of ±10.2 kJ mol?1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.
  相似文献   

15.
Orthopyroxene and olivine exposed along the rim of a harzburgite xenolith from La Palma (Canary Islands) show polycrystalline selvages and diffusion zones that result from contact with mafic, alkaline, silica-undersaturated melts during at least 10-100 years before eruption. The zoned selvages consist of a fine-grained reaction rim towards the xenolith and a coarser grained, cumulate-like layer towards the melt contact. The diffusion zones are characterized by decreasing magnesium number from about 89-91 in the xenolith interior to 79-85 at the rims, and clearly result from Fe-Mg exchange with surrounding mafic melt. The width of the diffusion zones is 80-200 µm in orthopyroxene and 1,020-1,730 µm in olivine. Orthopyroxene also shows decreasing Al2O3 and Cr2O3 and increasing MnO and TiO2 towards the reaction rims. Textural relations and comparisons with dissolution experiments suggest that orthopyroxene dissolution by silica-undersaturated melt essentially ceased after days to weeks of melt contact, possibly because of decreasing temperature and formation of the reaction rims. The short dissolution phase was followed by prolonged growth of diffusion zones through cation exchange between xenolith minerals and melt across the reaction rims, and by the growth of cumulus crystals. The observations indicate that orthopyroxene xenocrysts and harzburgite xenoliths can survive in mafic, silica-undersaturated, subliquidus magmas at 1,050-1,200 °C and 200-800 MPa for tens of years. Modeling and comparison of the diffusion zones indicate that the average Fe-Mg interdiffusion coefficient DFeMg in orthopyroxene is 2 log units lower than that in olivine; at 1,130 °C and QFM-buffered oxygen fugacity, DFeMgopx = 3 ×10 - 19  m2  s- 1D_{FeMg}^{opx} = 3 \times 10^{ - 19} \,{\rm m}^2 \,{\rm s}^{{\rm - 1}} . The new data overlap well with recently published data for DFeMg in diopside, and indicate that DFeMg opxD_{FeMg\,}^{opx} (as predicted by previous authors) may be extrapolated to higher temperatures and oxygen fugacities. It is suggested that DFeMg opx D_{FeMg\,}^{opx} and DFeMg in Mn-poor ferromagnesian garnet are similar within 0.5 log units at temperatures between 1,050 and 1,200 °C.  相似文献   

16.
Experiments on the partitioning of Cu between different granitic silicate melts and the respective coexisting aqueous fluids have been performed under conditions of 850 °C, 100 MPa and oxygen fugacity(f O2) buffered at approaching Ni–Ni O(NNO). Partition coefficients of Cu(DCu= cfluid/cmelt) were varied with different alumina/alkali mole ratios [Al2O3/(Na2O·K2O), abbreviated as Al/Alk], Na/K mole ratios, and Si O2 mole contents. The DCu increased from 1.28 ± 0.01 to 22.18 ± 0.22 with the increase of Al/Alk mole ratios(ranging from 0.64 to 1.20)and Na/K mole ratios(ranging from 0.58 to 2.56). The experimental results also showed that DCuwas positively correlated with the HCl concentration of the starting fluid.The DCuwas independent of the Si O2 mole content in the range of Si O2 content considered. No DCuvalue was less than 1 in our experiments at 850 °C and 100 MPa, indicating that Cu preferred to enter the fluid phase rather than the coexisting melt phase under most conditions in the melt-fluid system, and thus a significant amount of Cu could be transported in the fluid phase in the magmatichydrothermal environment. The results indicated that Cu favored partitioning into the aqueous fluid rather than themelt phase if there was a high Na/K ratio, Na-rich, peraluminous granitic melt coexisting with the high Cl-fluid.  相似文献   

17.
Diffusion coefficients for Sm, Sr, and Pb in fluorapatite at 900°–1250°C were obtained by measuring experimentally-induced diffusional uptake profiles of these elements in the margins of gem-quality apatite crystals. The crystals were immersed in synthetic melts enriched in the trace elements of interest and presaturated in apatite, and the resulting diffusion gradients were characterized by electron microprobe analysis. Except in the case of Pb, the diffusivities define good Arrhenius lines for the respective elements: DSm = 2.3 × 10?6exp(?52,200/RT) DSr = 412 exp(?100,000/RT). (Diffusion perpendicular to and parallel to c is measurably different in the case of Sr; the Arrhenius equation given above is an average for the two directions). Results on Pb were erratic, probably because extremely Pb-rich melts were used for some of the experiments. Data believed to be reliable define the following Arrhenius line: DPb = 0.035 exp(?70,000/RT). Constraints based on closure of natural apatites with respect to Pb suggest that the experimental data can be extrapolated, with sizeable uncertainty, to temperatures as low as 550°C.When applied to the question of isotopic and trace-element equilibration of residual or entrained apatites with crustal melts, the measured diffusivities indicate that 0.05-cm crystals will rarely preserve the original Pb-isotope characteristics of the source; the same is not true, however, of Sr (and, under some conditions, the REE), which may be unaffected at crystal cores during typical melting events.  相似文献   

18.
Constraining the composition of primitive kimberlite magma is not trivial. This study reconstructs a kimberlite melt composition using vesicular, quenched kimberlite found at the contact of a thin hypabyssal dyke. We examined the 4 mm selvage of the dyke where the most elongate shapes of the smallest calcite laths suggest the strongest undercooling. The analyzed bulk compositions of several 0.09-1.1 mm2 areas of the kimberlite free from macrocrysts were considered to be representative of the melt. The bulk analyses conducted with a new “chemical point-counting” technique were supplemented by modal estimates, studies of mineral compositions, and FTIR analysis of olivine phenocrysts. The melt was estimated to contain 26-29.5 wt% SiO2, ∼7 wt% of FeOT, 25.7-28.7 wt% MgO, 11.3-15 wt% CaO, 8.3-11.3 wt% CO2, and 7.6-9.4 wt% H2O. Like many other estimates of primitive kimberlite magma, the melt is too magnesian (Mg# = 0.87) to be in equilibrium with the mantle and thus cannot be primary. The observed dyke contact and the chemistry of the melt implies it is highly fluid (η = 101-103 Pa s at 1100-1000 °C) and depolymerized (NBO/T = 2.3-3.2), but entrains with 40-50% of olivine crystals increasing its viscosity. The olivine phenocrysts contain 190-350 ppm of water suggesting crystallization from a low SiO2 magma (aSiO2 below the olivine-orthopyroxene equilibrium) at 30-50 kb. Crystallization continued until the final emplacement at depths of few hundred meters which led to progressively more Ca- and CO2-rich residual liquids. The melt crystallised phlogopite (6-10%), monticellite (replaced by serpentine, ∼10%), calcite rich in Sr, Mg and Fe (19-27%), serpentine (29-31%) and minor amounts of apatite, ulvöspinel-magnetite, picroilmenite and perovskite. The observed content of H2O can be fully dissolved in the primitive melt at pressures greater than 0.8-1.2 kbar, whereas the amount of primary CO2 in the kimberlite exceeds CO2 soluble in the primitive kimberlite melt. A mechanism for retaining CO2 in the melt may require a separate fluid phase accompanying kimberlite ascent and later dissolution in residual carbonatitic melt. Deep fragmentation of the melt as a result of volatile supersaturation is not inevitable if kimberlite magma has an opportunity to evolve.  相似文献   

19.
The energetics of multicomponent diffusion in molten CaO-Al2O3-SiO2 (CAS) were examined experimentally at 1440 to 1650°C and 0.5 to 2 GPa. Two melt compositions were investigated: a haplodacitic melt (25 wt.% CaO, 15% Al2O3, and 60% SiO2) and a haplobasaltic melt (35% CaO, 20% Al2O3, and 45% SiO2). Diffusion matrices were measured in a mass-fixed frame of reference with simple oxides as end-member components and Al2O3 as a dependent variable. Chemical diffusion in molten CAS shows clear evidence of diffusive coupling among the components. The diffusive flux of SiO2 is significantly enhanced whenever there is a large CaO gradient that is oriented in a direction opposite to the SiO2 gradient. This coupling effect is more pronounced in the haplodacitic melt and is likely to be significant in natural magmas of rhyolitic to andesitic compositions. The relative magnitude of coupled chemical diffusion is not very sensitive to changes in temperature and pressure.To a good approximation, the measured diffusion matrices follow well-defined Arrhenius relationships with pressure and reciprocal temperature. Typically, a change in temperature of 100°C results in a relative change in the elements of diffusion matrix of 50 to 100%, whereas a change in pressure of 1 GPa introduces a relative change in elements of diffusion matrix of 4 to 6% for the haplobasalt, and less than 5% for the haplodacite. At a pressure of 1 GPa, the ratios between the major and minor eigenvalues of the diffusion matrix λ12 are not very sensitive to temperature variations, with an average of 5.5 ± 0.2 for the haplobasalt and 3.7 ± 0.6 for the haplodacite. The activation energies for the major and minor eigenvalues of the diffusion matrix are 215 ± 12 and 240 ± 21 kJ mol−1, respectively, for the haplodacite and 192 ± 8 and 217 ± 14 kJ mol−1 for the haplobasalt. These values are comparable to the activation energies for self-diffusion of calcium and silicon at the same melt compositions and pressure. At a fixed temperature of 1500°C, the ratios λ12 increase with the increase of pressure, with λ12 varying from 2.5 to 4.1 (0.5 to 1.3 GPa) for the haplodacite and 4 to 6.5 (0.5 to 2.0 GPa) for the haplobasalt. The activation volumes for the major and minor eigenvalues of the diffusion matrix are 0.31 ± 0.44 and 2.3 ± 0.8 cm3 mol−1, respectively, for the haplodacite and −1.48 ± 0.18 and −0.42 ± 0.24 cm3 mol−1 for the haplobasalt. These values are quite different from the activation volumes for self-diffusion of calcium and silicon at the same melt compositions and temperature. These differences in activation volumes between the two melts likely result from a difference in the structure and thermodynamic properties of the melt between the two compositions (e.g., partial molar volume).Applications of the measured diffusion matrices to quartz crystal dissolution in molten CAS reveal that the activation energy and activation volume for quartz dissolution are almost identical to the activation energy and activation volume for diffusion of the minor or slower eigencomponent of the diffusion matrix. This suggests that the diffusion rate of slow eigencomponent is the rate-limiting factor in isothermal crystal dissolution, a conclusion that is likely to be valid for crystal growth and dissolution in natural magmas when diffusion in liquid is the rate-limiting factor.  相似文献   

20.
The partitioning behavior of Cl among apatite, mafic silicate melt, and aqueous fluid and of F between apatite and melt have been determined in experiments conducted at 1066 to 1150 °C and 199-205 MPa. The value of DClapatite/melt (wt. fraction of Cl in apatite/Cl in melt) ≈0.8 for silicate melt containing less than ∼3.8 wt.% Cl. At higher melt Cl contents, small increases in melt Cl concentration are accompanied by large increases in apatite Cl concentration, forcing DClapatite/melt to increase as well. Melt containing less than 3.8% Cl coexists with water-rich vapor; that containing more Cl coexists with saline fluid, the salinity of which increases rapidly with small increases in melt Cl content, analogous to the dependency of apatite composition on melt Cl content. This behavior is due to the fact that the solubility of Cl in silicate melt depends strongly on the composition of the melt, particularly its Mg, Ca, Fe, and Si contents. Once the melt becomes “saturated” in Cl, additional Cl must be accommodated by coexisting fluid, apatite, or other phases rather than the melt itself. Because Cl solubility depends on composition, the Cl concentration at which DClapatite/melt and DClfluid/melt begin to increase also depends on composition. The experiments reveal that DFapatite/melt ≈3.4. In contrast to Cl, the concentration of F in silicate melt is only weakly dependent on composition (mainly on melt Ca contents), so DFapatite/melt is constant for a wide range of composition.The experimental data demonstrate that the fluids present in the waning stages of the solidification of the Stillwater and Bushveld complexes were highly saline. The Cl-rich apatite in these bodies crystallized from interstitial melt with high Cl/(F + OH) ratio. The latter was generated by the combined processes of fractional crystallization and dehydration by its reaction with the relatively large mass of initially anhydrous pyroxene through which it percolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号