首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Ekmann 《Solar physics》1974,38(1):73-75
Based on pinhole photometer observations in 4–6 wavelength regions we have searched for a connection between the intensities of the umbra and the penumbra of sunspots. For the 1.67 μm wavelength region it is apparent that spots with dark umbrae also have dark penumbrae. In the other wavelength regions similar relations are found. The darkness of the spot is probably connected with the degree of complexity of the spot.  相似文献   

2.
Active regions on the Sun in the 20th solar cycle are studied with special reference to their association with proton flares based on microwave interferometric observations at Toyokawa Observatory. It has been reconfirmed that the active regions associated with intense S-component emission with a high 3-cm to 8-cm flux ratio are likely to produce proton flares. About one fourth of 259 active regions during the period investigated are found to have definite features in the spatial distribution of polarization at a wavelength of 3 cm. Active regions with one particular type of polarization pattern have a good correlation with the occurrence of proton flares.  相似文献   

3.
The possibility that crystalline formaldehyde polymers are present in cometary dust is discussed. In common with most other parent molecules proposed for comets, (H2CO) n is difficult to detect, even if it is present in relatively high concentrations. The optical properties of these polymers in the visual and infrared regions are similar to those of silicate grains, and crystalline formaldehyde polymers provide no emission at 6 cm wavelength. The lifetime of gaseous H2CO in the solar radiation field is too short, and the expected transitions in the microwave region would be too weak to be detected. However, the available data concerning the physical properties of comets indicate that polymerized formaldehyde cannot be ruled out as a major constituent of cometary material.  相似文献   

4.
Daily solar radio flux at six different frequencies in dm, cm and mm wavelength regions has been studied for 182 days from December 1, 1970 to May 30, 1971. It is found that the slowly varying component of the centimeter wave emission correlates well with the physical model of the coronal active regions derived by Sengupta (Sengupta, 1971b) from which, as he showed earlier, most of the solar soft X-rays of wavelength less than 20 Å comes. It is also found that the cm wave emission is consistent with the assumption that the emitting regions are optically thin in this wavelength range.Emissions in dm and mm wavelength ranges, however, show poor correlation with the physical model of the soft X-ray emitting regions.It is concluded that the preferred regions of cm wave emission are located in the same region of solar corona from where most of the soft X-rays comes, but are different from the preferred regions of mm and dm emission.  相似文献   

5.
Jobea Cimino 《Icarus》1982,51(2):334-357
The opportunity to determine the planetwide temperature and cloud structure of Venus using radio occultation techniques arose with Pioneer Venus. Amplitude and Doppler data provided by the radio occultation experiment offered a unique and powerful means of examining the atmospheric properties in the lower cloud region.Absorption due to gaseous components of the atmosphere was subtracted from the measured absorption coefficient profiles before they were used to compute cloud mass contents. This absorption was found to represent a small part of the total absorption, depending on the latitude. In the main cloud deck, gaseous absorption contributes 10 to 20%, however, at the bottom of the detected absorption layer the sulfuric acid vapor contributes up to 100% due to increased vapor pressures. The clouds are the primary contributing absorbers in the 1- to 3-bar level of the Venus atmosphere. Below about 3 bars, depending on the latitude, absorption due to sulfuric acid vapor dominates.If a cloud particle model consisting of a solid nonabsorbing dielectric sphere with a concentric liquid sulfuric acid coating is invoked, the absorptivity of the particles increases from that of a pure sulfuric acid liquid sphere, and the mass content derived from the absorption coefficient profiles decreases. As the ratio of the core radius to the total radius (q) increases, absorption increases by more than a factor of 10 for high values of q. In the case of pure sulfuric acid droplets, the conductivity is sufficiently high that some of the field is excluded from the interior of the droplet thereby reducing the absorption. When a dielectric core of nonabsorbing material is introduced, the surface charge density is reduced and the absorption increases.The mass contents for all orbits in the equatorial region of Venus were calculated using values of q from 0 to 1. The resulting profiles match the probe mass content profiles at similar locations when a q of 0.97 is chosen.The wavelength dependence of the absorption for the spherical shell model varies with q from 1/λ2 for pure liquid to λ0.2 for a large core. A q of from 0.96 to 0.98 results in a wavelength dependence of 1/λ1.0 to 1/λ1.4 which matches the radio occultation absorption wavelength dependence and the microwave opacity wavelength dependence.Mass content profiles using a q of 0.97 were determined for occultations in the polar, collar, midlatitudinal, and equatorial regions assuming q remains constant over the planet. The results show considerable variability in both the level and the magnitude of the lower cloud deck. The cloud layer is lowest in altitude in the polar region. This might be expected as the temperature profile is cooler in the polar region than over the rest of the planet. The mass content is greatest in the polar and collar regions; however, many of the collar profiles were cut off due to fluctuations resulting from increased turbulence in the collar region. The mass contents are least dense in the midlatitude regions. There is a sharp lower boundary at about 1.5 bars in the equatorial and midlatitude regions and at about 2.5 bars in the polar region. Measurements made by the Particle Size Spectrometer and nephelometers also showed sharp lower cloud boundaries at this level.  相似文献   

6.
We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈5.3 mHz, around four active regions, through spatial maps of their power estimated using data from the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The wavelength channels 1600 Å and 1700 Å from AIA are now known to capture clear oscillation signals due to helioseismic p-modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so-called “acoustic halos” seen around active regions, as a function of wave frequencies, inclination, and strength of magnetic field (derived from the vector-field observations by HMI), and observation height. We infer possible signatures of (magneto)acoustic wave refraction from the observation-height-dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p-mode absorption and mode conversions by the magnetic field.  相似文献   

7.
Kevin Pang  Charles W. Hord 《Icarus》1973,18(3):481-488
The Mariner 9 ultraviolet spectrometer observed the brightness of a region on the south polar cap centered at approximately ?87°S, 10°W. Measurements taken at various incidence and emission angles (i and ?) show that the brightness increased with decreasing air mass, ≈(sec i + sec ?). The observed intensity consists primarily of a component reflected from the cap and twice-attenuated by the atmosphere and a component diffusely reflected from the atmosphere. The diffusely reflected component was determined from nearby observations of non-polar regions at the same incidence and emission angles and was substrated from the total intensity. Inversion of the intensity difference using a formula analogous to the Bouger-Langley law yielded the optical thickness of the atmosphere. The dust cloud over the polar cap was moderately thick between November 26 and December 2, 1971. At this time the optical thickness was near unity, and it decreased approximately linearly with time, reaching a value close to that of a Rayleigh atmosphere by mid-February. The optical thickness showed little dependence on the wavelength during the early orbital observations. As the dust storm cleared, the atmospheric optical thickness exhibited increasingly strong inverse wavelength dependence. Particles large compared with the wavelength dominated the Martian dust storm. These particles are estimated to have a mean radius of about 2 μm.  相似文献   

8.
The RESIK instrument is an X-ray spectrometer with bent crystals onboard the CORONAS-F satellite. It was used to observe the spectra of solar flares, active regions, and quiet corona. During the period of the instrument’s operation, many spectra were collected in four energy channels covering the wavelength range from 3.2 to 6.1 Å. For the present analysis, we selected solar flares of various X-ray classes (B, C, and M in the GOES notation), which were observed during moderate level of solar activity (from January to March 2003). The analysis of the RESIK spectra fulfilled with different techniques allowed us to determine the temperature, emission measure, and temperature distribution of the differential emission measure, as well as to examine their time variability.  相似文献   

9.
Various observations indicate that coronal holes generally appear as low brightness temperature regions (LTRs) in the centimeter and millimeter wavelength ranges. However, within their borders local enhancements of radiation, that is, high brightness temperature regions (HTRs), often occur. The theory behind the described behavior is not fully understood and therefore we analyze full-disk solar images obtained at a wavelength of 8 mm at Metsähovi Radio Observatory and compare them with data simultaneously taken in other wavelength ranges. The observational finding that the average brightness temperature of coronal holes is not much different from the quiet-Sun level (with localized deviations toward higher and lower intensities on the order of a few percent) is compared with theoretical models of the thermal bremsstrahlung radiation originating in the solar chromosphere, transition region, and corona. Special attention is devoted to the interpretation of the localized enhancements of radiation observed inside coronal holes at millimeter wavelengths. The main conclusion is that the most important contribution to the brightness temperature comes from an increased density in the transition region and low corona (i.e., at the heights where the temperature is below 106 K). This can explain both the LTRs and HTRs associated with coronal holes.  相似文献   

10.
Photospheric brightness fluctuations were recorded photoelectrically across a part of the sun near the center of the disk, and simultaneously for two regions of the continuous spectrum chosen at various wavelengths between λ3500 Å and λ5500 Å. The auto-correlation functions and spatial power spectra were derived for each recording, and the cross-correlation functions, spatial relative phase and coherence spectra were computed for each pair of recordings. The main results are:
  1. (1)
    The cross-correlation between any two recordings obtained for various regions of the continuous spectrum, is a function of the wavelength distance Δλ between these regions. The decrease of the cross-correlation with increasing Δλ is due to the fact that separate photometric inhomogeneities radiate in limited spectral ranges.  相似文献   

11.
P. Maltby 《Solar physics》1972,26(1):76-82
Observations of the penumbral intensity of sunspots in 13 wavelength regions are presented. In 4 wavelength regions 54 sunspots are measured. In the other wavelength regions the number of sunspots considered ranges from 3–19.The penumbral intensity alters with position within the spot. This intensity variation is found to be comparable with the change in intensity from one spot to another. The penumbral intensity is found to be independent of spot size in the sample considered.The penumbra model of Kjeldseth Moe and Maltby (1969) with = 0.055 is supported by the measurements.  相似文献   

12.
In connection with the appearance of the first results of infrared observations of stellar flares, a more elaborate analysis ofnegative infrared flares as a phenomenon, predicted by the fastelectron hypothesis, has been carried out. As a result, the wavelength regions of negative flares are established for the stars of different spectral types as well as the calculated amplitudes of the negative flares (Tables I and II). The analysis of the infrared observations (c.f. Kilyachkoet al., 1978) lead to the following conclusions:
  1. The negative infrared flares discovered around 8000 Å is not in agreement with the theory in the case of the flare star UV Cet. Some traces of negative flares have been noted for a number of less powerful flares of EV Lac.
  2. The amplitudes of the recorded positive flares of UV Cet and EV Lac on λ8000 Å are in good agreement with the magnitudes predicted by the fast-electron hypothesis (non-thermal bremsstrahlung).
  3. In the future the negative flares around 8000 Å should be looked for in early-type flare stars of types M0-K5.
  4. For a positive discovery of negative flares, future observations must be carried out in the wavelength region of 1–3 μm.
  相似文献   

13.
In a recent investigation evidence was presented for a low-level sinusoidal oscillation superimposed on top of the Hubble flow. This oscillation was in V CMB , in a sample of type Ia Supernovae sources with accurate distances, and it was found to have a wavelength close to 40 Mpc. It became easily visible after the removal of several previously identified discrete velocity components. Its amplitude like that of the Hubble velocity showed an increase with distance, as would be expected for a constant-amplitude space oscillation. Here we report that this oscillation is also present in distance clumping in these sources, with the same wavelength, but in phase quadrature. The discrete velocity components do not play a role in detecting the distance clumping wavelength. Assuming that time proceeds from high cosmological redshift to low, the blue-shifted velocity peaks, which represent the contraction stage of the velocity oscillation, then lead the density peaks. With the discrete velocity components removed we also find evidence for at least one other, weaker velocity oscillation. It is found to have a wavelength similar to one reported in density clumping by previous investigators. In those cases the source samples were much larger.  相似文献   

14.
Solar UV is the principal energy source impinging the atmosphere of Titan while the energy from the electrons in Saturn's magnetosphere is less than 0.5% of the UV light. Titan haze analogs were prepared by the photolysis of a mixture of gases that simulate the composition of its atmosphere (nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene). The real (n) and imaginary (k) parts of the complex refractive index of haze analogs formed from four different gas mixtures were calculated from the spectral properties of the solid polymer in UV-visible, near infrared and infrared wavelength spectral regions. The value of n was constant at 1.6±0.1 throughout the 0.2-2.5 μm region. The variation of k with wavelength for the values derived for Titan has a lower error than the absolute values of k so the more significant comparisons are with the slopes of the k(λ) plots in the UV-VIS region. Three of the photochemical Titan haze analogs had slopes comparable to those derived for Titan from the Voyager data (Rages and Pollack, 1980, Icarus 41, 119-130; McKay and Toon, 1992, in: Proceedings of the Symposium on Titan, in: ESA SP, Vol. 338, pp. 185-190). The slopes of the k(λ) plots for haze analogs prepared by spark discharge (Khare et al., 1984, Icarus 60, 127-137) and plasma discharge (Ramirez et al., 2002, Icarus 156, 515-529) were also comparable to Titan's. These finding show that the k(λ) plots do not differentiate between different laboratory simulations of atmospheric chemistry on Titan in the UV-VIS near IR region (0.2-2.5 microns). There is a large difference between the k(λ) in the infrared between the haze analogs prepared photochemically and analogs prepared using a plasma discharges (Khare et al., 1984, Icarus 60, 127-137; Coll et al., 1999, Planet. Space Sci. 47, 1331-1340; Khare et al., 2002, Icarus 160, 172-182). The C/N ratio in the haze analog prepared by discharges is in the 2-11 range while that of the photochemical analogs is in the 18-24 range. The use of discharges and UV light for initiating the chemistry in Titan's atmosphere is discussed.  相似文献   

15.
The WUVS (WSO-UV Ultra Violet Spectrographs) consists of two high resolution spectrographs (R=50000) covering the Far-UV range of 115–176 nm and the Near-UV range of 174–310 nm, and a long-slit spectrograph (R=1000) covering the wavelength range of 115–305 nm. Significant progress in the CCD development gives a possibility to use back-illuminated CCD detectors with anti-reflection coating for observations in the UV. These detectors are under construction by e2v company (UK) based on their heritage of detectors production for numerous space missions including those for UV- and far-UV. The main parameters of WUVS detector subsystems are described.  相似文献   

16.
Results are given for polarization measurements of both the entire Jupiter disk and its centre for seven wavelength regions in the 0.373–0.800 μm range. Interpretation of these observations is based on two model atmospheres: (A) The cloud layer particles and molecules are mixed with a constant ratio. (B) A gas layer with small optical thickness, τ0, is situated above the cloud layer which consists of aerosol particles. The aerosol particles are considered to be non-absorbing spheres, their size distribution being normal Gaussian. The index of refraction for the particles is considered to be independent of wavelength in the above spectral range. An approximate method is used for the determination of parameters of the Jovian atmosphere. This method was tested by evaluation of the parameters for the Venus cloud layer: The refractive index was found to be n = 1.435 ± 0.015, the square of the logarithmic dispersion of the radius of particles σ2 = 0.12 and the mean geometrical radius of particles r0 = 0.74 μm which agree well with exact values given by Hansen and Arking (1971). For the atmosphere of Jupiter it was found: n = 1.36 ± 0.01, σ2 ? 0.3, r0 ? 0.2 μm. This refractive index for the particles agrees well with the ammonia cloud layer hypothesis.  相似文献   

17.
New UBVRI polarimetric observations of ten asteroids, including space mission targets 1 Ceres and 21 Lutetia, are presented. These observations were obtained with the 1.25-m telescope of the Crimean Astrophysical Observatory and have been used to study the wavelength dependence of polarization for a sample of asteroids belonging to the M and low albedo classes. A more general analysis including also a larger data set of UBVRI polarimetric observations available in the literature for more than 50 main belt asteroids belonging to different taxonomic classes shows that the variation of the polarization degree Pr as a function of wavelength is generally well described by a linear trend. It typically does not exceed 0.2% in the studied spectral range 0.37-0.83 microns and tends to increase for increasing phase angle. Asteroids belonging to the S and M classes are found to exhibit a deeper negative branch and smaller positive polarization for increasing wavelength (negative sign of the slope of ΔPrλ). Since the objects belonging to these classes are known to exhibit reddish reflectance spectra, the observed wavelength behavior of negative polarization contradicts the well-known inverse correlation of Pmin and albedo. Low albedo asteroids show larger dispersion of spectral slopes, but the overall trend is characterized by a shallower negative branch and a larger positive polarization for increasing wavelength (positive sign of the slope of ΔPrλ). A few exceptions from this general trend are discussed. The observed variety in the wavelength dependence of asteroid polarization seems to be mainly attributed to surface composition.  相似文献   

18.
The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section σ0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties.  相似文献   

19.
We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan.We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section σ0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties.  相似文献   

20.
L. Ben Jaffel  Y.J. Kim 《Icarus》2007,190(2):504-527
This study uses the adding-doubling radiative transfer method in which we take into account the curvature effect of the planetary atmosphere in order to test the sensitivity of the jovian Ly-α emission line in relation to H column density, eddy diffusion coefficient, frequency redistribution function for photon scattering, temperature vertical profile, and an added hot atomic H layer on the top of the atmosphere. We also focus here on developing new diagnostic tools that will help us to obtain more confidently the underlying thermospheric structure of Jupiter. First, using the brightness distribution for specific wavelength bands as proposed by Ben Jaffel et al. [Ben Jaffel, L., Magnan, C., Vidal-Madjar, A., 1988. Astron. Astrophys. 204, 319-326], we show that the spatial thickness of the atomic H layer above the homopause level can be measured directly as the separation between the vertical positions of respectively the line core and line wing optical limbs. This thickness also constrains the [H] column and the value KH of the eddy diffusion coefficient at the homopause level at the disc location under consideration. We also propose to refine the value of KH and [H], respectively, at a specific planetary latitude, using the Q ratio of the limb peak brightness to the intensity from other regions over the planetary disc. Finally, the relationship between the disc brightness distribution from specific wavelength bands of the emission line and the temperature gradient in the thermosphere is demonstrated, thus providing an accurate tool to access this key information from high resolution observations. Quick, preliminary comparisons with some existing HTS/STIS data show the H layer thickness at auroral latitudes (∼1700 km) is much smaller than at equatorial latitudes (∼3900 km). These results strongly support the existence of a gradient in both H density and KH versus latitude, with higher values of KH at high latitudes and higher values of the H density at the equatorial regions. Such a small H layer thickness at auroral latitudes is consistent with a high mixing in the atmosphere that brings the hydrocarbons upwards, reducing consequently the column of hydrogen that scatters photons. These preliminary results show the strength of the proposed approach and open new horizons to use strong resonant emission lines at high resolution as a diagnostic for the state and structure of planetary upper atmospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号